Effects of Alkalies in Class C Fly Ash on Alkali-Aggregate Reaction


  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Effects of Alkalies in Class C Fly Ash on Alkali-Aggregate Reaction

Author(s): C. Lee

Publication: Special Publication

Volume: 114


Appears on pages(s): 417-430

Keywords: alkali-aggregate reactions; alkali content; alkalies; Cements; expansion: fly ash; mineral admixtures; mortars (material); silica gel

Date: 5/1/1989

Effects of alkalies in Class C fly ash on Alkali-aggregate reaction were studied by using two cements, a type I high-alkali cement and a type II low-Alkali cement, and three Class C fly ashes. Mortar bar expansion was measured according to ASTM C 441. Reaction products of alkali-aggregate reaction were examined n by XRD, SEM, and EDAX. were to study: The purposes of this research (1) the significance of the standard mortar bar test in determining the degree to which high and low-alkali cement could be replaced by Class C fly ashes, and (2) effect of fly ash alkali contents on alkali reactivity. Expansion of mortar bars prepared using high-alkali cement increased at low replacement levels but decreased at high replacement levels for curing periods up to 12 weeks at 38 C; whereas expansion of mortars prepared using low-alkali cement increased at all Levels of fly ash replacements up to 40% by volume. A critical equivalent Na20/Si02 mole ratio was identified and found to characterize alkali reactivity. No crys-talline reaction products could be identified by XRD. Results of SEM and EDAX showed that the reaction product was an alkali-silicate gel, composed mainly of silica, sodium, potassium, and calcium, with their relative amounts varying within the gel.