ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-2 of 2 Abstracts search results

Document: 

SP98

Date: 

March 3, 1987

Author(s):

Editor: Shlomo Ginsburg

Publication:

Symposium Papers

Volume:

98

Abstract:

SP-98 Because the design of concrete structures and proportioning concrete mixtures can be complex, you need state-of-the-art knowledge when selecting structural systems and construction materials. Computer Applications in Concrete Technology has been especially prepared to aid designers and engineers in all facets of concrete design and technology. Providing a source of "know-how" for the entire civil engineering community, this symposium volume of 13 papers covers a broad spectrum of computer applications. Some of the subjects include: expert systems for selecting concrete constituents, analysis of reinforced concrete shear walls, analysis and design of load-bearing tilt-up walls, decision support systems for design, and spreadsheet programming for structural design. Other topics include: monitoring construction with microcomputers as you build, analysis and design of reinforced and prestressed concrete compression members using desktop computers, and integrated design environment for concrete structures.

DOI:

10.14359/14134


Document: 

SP98-05

Date: 

March 3, 1987

Author(s):

J. D. Glikin and R. G. Oesterle

Publication:

Symposium Papers

Volume:

98

Abstract:

Because of the presence of lateral loads and high-end eccentricities, the ACI 318-83 empirical design method cannot be used for design of tilt-up walls. Analysis must be performed during design to account for the P-{delta} effects. To confirm various design concepts and to evaluate the slenderness limitations, a series of tests on concrete wall panels was conducted. Several simplified design procedures were used to compare analytical results to test observations of slender load-bearing walls. Results of computer program TILT for IBM-PC (or compatible) computers were compared with the results of simplified design procedure calculations and test observations. Investigations show that the actual strength of load-bearing tilt-up walls are considerably higher than predicted by simplified analysis. The paper briefly discusses the theory of geometrical and material nonlinearities and presents methods for solutions that are incorporated in the program TILT. Conclusions and effectiveness of the TILT computer program for analyses of tilt-up load-bearing walls are shown.

DOI:

10.14359/2839


Results Per Page 




Please enter this 5 digit unlock code on the web page.