In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 56 Abstracts search results
Document:
22-319
Date:
May 3, 2023
Author(s):
Fayez Moutassem, Samir E. Chidiac
Publication:
Materials Journal
Volume:
120
Issue:
4
Abstract:
A requirement for achieving sustainable concrete structures is to develop a quantitative method for designing concrete mixtures that yields the target rheological properties and compressive strength. Toward this objective, this paper proposes a mathematical model approach to improve the sustainability of the concrete industry. A postulation that packing density, a function of the concrete mixture, provides the link between concrete mixture, rheological properties, and compressive strength was investigated. Rheological models for yield stress and plastic viscosity and a compressive strength model were adopted with packing density as a central variable. The rheological models employ a cell description that is representative of fresh concrete. The compressive strength model is based on excess paste theory to account for the concrete mixture proportions, gradation of the aggregate particles, and porosity. An experimental program was developed to calibrate and test these models. Results revealed that packing density provides a consistent and reliable link and that the concrete mixture composition can be designed to achieve the target rheological properties and hardened properties and ensure quality control. Consequently, a new mixture proportioning methodology was developed and proposed as an improvement to the ACI 211.1 mixture design method. Furthermore, a case study was conducted to test the applicability and adequacy of this proposed method. This research outcome, which provides a quantitative approach to designing concrete mixtures to meet specific strength requirements and rheology, can also be used to ensure quality control before concrete is cast.
DOI:
10.14359/51738818
22-057
January 1, 2023
N. P. Kannikachalam, D. di Summa, R. P. Borg, E. Cuenca, M. Parpanesi, N. De Belie, and L. Ferrara
1
This research focuses on the evaluation of the sustainability of recycled ultra-high-performance concrete (R-UHPC) in a life cycle analysis (LCA) perspective, and with reference to a case study example dealing with structures exposed to extremely aggressive environments. This involves the assessment of the self-healing capacity of R-UHPC, as guaranteed by the R-UHPC aggregates themselves. Recycled aggregates (RA) were created by crushing 4-month-old UHPC specimens with an average compressive strength of 150 MPa. Different fractions of recycled aggregates (0 to 2 mm) and two different percentages (50 and 100%) were used as a substitute for natural aggregates in the production of R-UHPC. Notched beam specimens were pre-cracked to 150 μm using a three-point flexural test. The autogenous self-healing potential of R-UHPC, stimulated by the addition of a crystalline admixture, was explored using water absorption tests and microscopic crack healing at a pre-determined time (0 days, 1 month, 3 months, and 6 months) following pre-cracking. Continuous wet/ dry healing conditions were maintained throughout the experimental campaign. The specimens using R-UHPC aggregates demonstrated improved self-healing properties to those containing natural aggregates, especially from the second to the sixth month. To address the potential environmental benefits of this novel material in comparison to the conventional ones, an LCA analysis was conducted adopting the 10 CML-IA baseline impact categories, together with a life cycle cost (LCC) analysis to determine the related economic viability. Both LCA and LCC methodologies are integrated into a holistic design approach to address not only the sustainability concerns but also to promote the spread of innovative solutions for the concrete construction industry. As a case study unit, a basin for collection and cooling of geothermal waters was selected. This is representative of both the possibility offered, in terms of structural design optimization and reduction of resource consumption, and of reduced maintenance guaranteed by the retained mechanical performance and durability realized by the self-healing capacity of R-UHPC.
10.14359/51737336
21-470
Julie K. Buffenbarger, James M. Casilio, Hessam AzariJafari, and Stephen S. Szoke
The overdesign of concrete mixtures and substandard concrete acceptance testing practices significantly impact the concrete industry’s role in sustainable construction. This study evaluates the impact of overdesign on the sustainability of concrete and embodied carbon emissions at the national and project scales. In addition, this paper reviews quality results from a concrete producer survey; established industry standards and their role in acceptance testing in the building codes; the reliance on proper acceptance testing by the licensed design professional, building code official, and the project owner; and the carbon footprints that result from overdesign of concrete mixtures. In 2020, a field survey conducted on over 100 projects documented Pennsylvania’s quality of field testing. Of those surveyed, only 15% of the projects met the testing criteria within the ASTM and building code requirements. As a result, the total overdesign-induced cement consumption is as large as 6.7% of the estimated cement used in the United States.
10.14359/51737334
21-463
Sean Monkman, Ryan Cialdella, and Jose Pacheco
An important part of improving the embodied carbon of the built environment is reducing carbon emissions associated with concrete. The long-term limitations around the availability of supplementary cementitious materials (SCMs) to replace portland cement have driven the search for additional innovative approaches. The beneficial use of carbon dioxide (CO2) in ready mixed concrete production has been developed and installed as retrofit technology with industrial users. An optimum dose of CO2 added to concrete as an admixture leads to the in-place formation of mineralized calcium carbonate (CaCO3) and can increase the concrete compressive strength. The improved performance can be leveraged to design concrete mixture proportions for a more efficient use of portland cement, along with the use of CO2 to reduce the carbon footprint of concrete. One producer has used the technology, starting in 2016, at over 50 plants. More than 3 million m3 of concrete have been shipped with an estimated net savings of 35,000 tonnes of CO2. The concrete produced with carbon dioxide is discussed in terms of the fresh and hardened performance, durability performance, and life cycle impacts.
10.14359/51734732
21-461
Francesca Lolli, Renee T. Rios, Katelynn Schoenrock, Emily Grubert, and Kimberly E. Kurtis
The use of performance-based specifications (PBS) may increase quality and sustainability while lowering project costs through innovations in concrete materials selection and proportioning. A preliminary survey was conducted showing that barriers to implementation for PBS still exist, the main barrier being the enforcement of the specification, followed by cost and time. This study aims to develop guidelines to overcome the identified barriers by presenting a laboratory-scale case study of six concrete mixtures that both conform (one) and do not conform (five) to Georgia Department of Transportation specifications. This case study includes experimental results of mechanical (flexural and compressive strength) and resistivity performance properties, as well as three additional parameters: time, cost, and carbon dioxide (CO2) emissions associated with each mixture design. This study showed that innovation in material use and mixture design can increase durability and performance while reducing the overall project cost and environmental impact.
10.14359/51738457
Results Per Page 5 10 15 20 25 50 100