ACI Global Home Middle East Region Portal Western Europe Region Portal
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 435 Abstracts search results
Document:
22-377
Date:
January 2, 2025
Author(s):
Tarutal Ghosh Mondal, Nikkolas Edgmond, Lesley H. Sneed, and Genda Chen
Publication:
Structural Journal
Volume:
122
Issue:
1
Abstract:
Current design provisions pertaining to the shear transfer strength of concrete-to-concrete interfaces, including those of the AASHTO LRFD design specifications and ACI 318 Code, are based on limited physical test data from studies conducted decades ago. Since the development of these design provisions, many studies have been conducted to investigate additional parameters. In addition, modern concrete technology has expanded the range of materials available and often includes the use of high-strength concrete and high-strength reinforcing steel. Recent studies examined the applicability of current shear-friction design approaches to interfaces that comprise high-strength concrete and/or high-strength steel and identified a need for revision to the existing provisions. To this end, this study leveraged a comprehensive database of test results collected from the literature to propose a deep-learningbased predictive model for normalweight concrete-to-concrete interfacial shear strength. Additionally, a new computation scheme is proposed to estimate the nominal shear strength with a higher prediction accuracy than the existing AASHTO LRFD and ACI 318 design provisions.
DOI:
10.14359/51743291
24-056
December 6, 2024
Camilo Vega, Abdeldjelil Belarbi, and Antonio Nanni
Design codes base the behavior of the shear friction interface on two models, the basic shear friction model, and the cohesion plus friction model. These models have been developed using steel as the reference reinforcing material and they have extended to design provisions when using glass fiber reinforced polymers (GFRP) materials. However, when using GFRP reinforcement where yielding does not happen, a different ultimate limit state needs to be introduced. Accordingly, additional data and analysis are required to validate and improve the proposed models and to verify what implications they have on design when specifying GFRP materials. In this research, a study was conducted based on previous experimental data on the contribution of GFRP bars to the mechanism of shear transfer by using the push-off test. Through a multiple linear regression analysis, a mathematical model introducing new parameters that accurately capture the behavior of this material with respect to shear transfer phenomena in concrete structures is presented in this paper. The findings of this study provide new insights into the behavior of the shear friction mechanism with GFRP reinforcement, suggesting potential updates for current design codes and guide specifications.
10.14359/51744398
23-322
October 9, 2024
Yail J. Kim, Jun Wang, Woo-Tai Jung, Jae-Yoon Kang, and Jong-Sup Park
This paper presents the implications of creep-fatigue interactions for the long-term behavior of bulb-tee bridge girders prestressed with either steel strands or carbon fiber-reinforced polymer (CFRP) tendons. A large amount of weigh-in-motion data incorporating 194 million vehicles are classified to realistically represent live loads. Computational simulations are conducted as per the engagement of discrete autonomous entities in line with time-dependent material models. In general, the properties of the CFRP tendons insignificantly vary over 100 years; however, the stress range of CFRP responds to fatigue cycles. Regarding prestress losses, the conventional method with initial material properties renders conservative predictions relative to refined approaches considering time-varying properties. The creep and fatigue effects alter the post-yield and post-cracking responses of the steel- and CFRP-prestressed girders, respectively. From deformational capability standpoints, the steel-prestressed girders are more vulnerable to fatigue in comparison with the CFRP-prestressed ones. It is recommended that the fatigue truck and the compression limit of published specifications be updated to accommodate the ramifications of contemporary traffic loadings. Although the operational reliability of both girder types is satisfactory, the CFRP-prestressed girders outperform their steel counterparts in terms of fatigue safety. Technical findings are integrated to propose design recommendations.
10.14359/51743304
22-398
September 1, 2024
Sangyoung Han, Jarrod Zaborac, Jongkwon Choi, Anca C. Ferche, and Oguzhan Bayrak
121
5
The results of an experimental program conducted to evaluate the performance of shear-critical post-tensioned I-girders with grouted and ungrouted ducts are presented. The experimental program involved the design, construction, and testing to failure of six fullscale specimens with different duct layouts (straight, parabolic, or hybrid) and using both grouted or ungrouted ducts. All tests resulted in similar failure modes, such as localized web crushing in the vicinity of the duct, regardless of the duct condition or layout. Furthermore, the normalized shear stresses at ultimate were similar for the grouted and ungrouted specimens. The current shear design provisions in the AASHTO LRFD Bridge Design Specifications (AASHTO LRFD) were reviewed, and updated shear-strength reduction factors to account for the presence of the duct in the web and its condition (that is, grouted or ungrouted) were proposed. The data generated from these tests served as the foundation for updated shear-strength reduction factors proposed for implementation in AASHTO LRFD.
10.14359/51740847
22-271
November 1, 2023
Ju-Hyung Kim, Yail J. Kim, and Hong-Gun Park
120
6
This paper presents mechanics-based modeling methodologies to predict the shear strength of squat walls incorporating boundary elements. Developed with the intention of surmounting the limitations of empirical models that are prevalent in the structural engineering community, these approaches are composed of an iterative analytical method and simplified design equations. Conforming to experimental observations, a failure criterion is established to determine the web crushing and shear compression of each wall component. Upon validating the methodologies against 123 test data compiled from the literature, detailed responses of the wall system are examined to comprehend the behavior of the web and the compression and tension boundary elements subjected to lateral loading. Model outcomes indicate that the overall strength of the squat walls is distributed to the web and the boundary elements by 58% and 42%, respectively, signifying that the contribution of the boundary elements should not be ignored, unlike the case of most customary models. In contrast to the provision of published design specifications, both horizontal and vertical reinforcing bars affect the shear strength of the web concrete. The growth of compressive principal strains, which dominate the failure of the members, is a function of the reinforcement ratio. According to statistical evaluations, the proposed models outperform existing models in terms of capacity prediction. The effects of major parameters are articulated from a practical standpoint.
10.14359/51739090
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.