ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 321 Abstracts search results

Document: 

23-330

Date: 

July 10, 2024

Author(s):

eiyuan Chen, Chunning Pei, Liheng Zhang, Shangkun Li, and Jialai Wang

Publication:

Materials Journal

Abstract:

The applications of alkali-activated slag (AAS) face challenges such as poor workability, rapid setting, and high autogenous shrinkage, which require chemical admixtures (CAs) to adjust the performance of AAS. Unfortunately, there are limited specific CAs available to tune AAS properties. To address this gap, this study proposes using a ubiquitous, naturally occurring compound, L-ascorbic acid (LAA), as a multi-functional performance-enhancing additive for AAS to overcome the major challenges of AAS. The findings showed that LAA can function as a retarder, plasticizer, strength enhancer, and autogenous shrinkage reducer for AAS. When 0.5% LAA was added, the compressive strengths of AAS mortars at 3d and 28ds increased by 28.9% and 19.6%, respectively, and the 28d autogenous shrinkage decreased by 43.1%. Both surface adsorption and ion complexation have been confirmed as the working mechanisms of LAA in hydrated AAS.

DOI:

10.14359/51742041


Document: 

23-101

Date: 

May 1, 2024

Author(s):

Le Teng, Alfred Addai-Nimoh, and Kamal H. Khayat

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

This study evaluates the potential to use shrinkage-reducing admixture (SRA) and pre-saturated lightweight sand (LWS) to shorten the external moist-curing requirement of ultra-high-performance concrete (UHPC), which is critical in some applications where continuous moist-curing is challenging. Key characteristics of UHPC prepared with and without SRA and LWS and under 3 days, 7 days, and continuous moist curing were investigated. Results indicate that the combined incorporation of 1% SRA and 17% LWS can shorten the required moist-curing duration because such a mixture under 3 days of moist curing exhibited low total shrinkage of 360 με and compressive strength of 135 MPa (19,580 psi) at 56 days, and flexural strength of 18 MPa (2610 psi) at 28 days. This mixture subjected to 3 days of moist curing had a similar hydration degree and 25% lower capillary porosity in paste compared to the Reference UHPC prepared without any SRA and LWS and under continuous moist curing. The incorporation of 17% LWS promoted cement hydration and silica fume pozzolanic reaction to a degree similar to extending the moist-curing duration from 3 to 28 days and offsetting the impact of SRA on reducing cement hydration. The lower capillary porosity in the paste compensated for the porosity induced by porous LWS to secure an acceptable level of total porosity of UHPC.

DOI:

10.14359/51740566


Document: 

23-055

Date: 

May 1, 2024

Author(s):

Sangyoung Han, Thanachart Subgranon, Hung-Wen Chung, Kukjoo Kim, and Mang Tia

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

A comprehensive laboratory testing program, field-testing program, numerical analysis, and life-cycle cost analysis were conducted to evaluate the beneficial effects of incorporating shrinkage-reducing admixture (SRA), polymeric microfibers (PMFs), and optimized aggregate gradation (OAG) into internally cured concrete (ICC) mixtures for rigid pavement applications. Results from the laboratory program indicate that all the ICC mixtures outperformed the standard concrete (SC) mixture. All the ICC mixtures showed a decrease in drying shrinkage compared to the SC mixture. Based on the laboratory program, three ICC mixtures and one SC mixture were selected for the full-scale test and subjected to a heavy vehicle simulator for accelerated fatigue testing. Extensive testing and analysis have shown that ICC mixtures incorporating SRA, PMFs, and OAG can be beneficially used in pavement applications to achieve increased pavement life.

DOI:

10.14359/51740564


Document: 

23-096

Date: 

May 1, 2024

Author(s):

Zoi G. Ralli and Stavroula J. Pantazopoulou

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

In light of the effort for decarbonization of the energy sector, it is believed that common geopolymer binding materials such as fly ash may eventually become scarce and new geological aluminosilicate materials should be explored as alternative binders in geopolymer concrete. A novel, tension-hardening geopolymer concrete (THGC) that incorporates high amounts of semi-reactive quarry wastes (metagabbro) as a precursor, and coarse quarry sand (granite) was developed in this study using geopolymer formulations. The material was optimized based on the particle packing theory and was characterized in terms of mechanical, physical, and durability properties (that is, compressive, tensile, and flexural resistance; Young’s modulus; Poisson’s ratio; absorption; drying shrinkage; abrasion; coefficient of thermal expansion; and chloride-ion penetration, sulfate, and salt-scaling resistance). The developed THGC, with an air-dry density of 1940 kg/m3 (121 lb/ft3), incorporates short steel fibers at a volume ratio of 2%, and is highly ductile in both uniaxial tension and compression (uniaxial tensile strain capacity of 0.6% at an 80% post-peak residual tensile strength). Using digital image correlation (DIC), multiple crack formation was observed in the strain-hardening phase of the tension response. In compression, the material maintained its integrity beyond the peak load, having attained 1.8% compressive strain at 80% postpeak residual strength, whereas upon further reduction to 50% residual strength, the sustained axial and lateral strains were 2.5% and 3.5%, respectively. The material exhibited low permeability to chloride ions and significant abrasion resistance due to the high contents of metagabbro powder and granite sand. The enhanced properties of the material, combined with the complete elimination of ordinary portland cement from the mixture, hold promise for the development of sustainable and resilient structural materials with low CO2 emissions, while also enabling the innovative disposal of wastes as active binding components.

DOI:

10.14359/51740704


Document: 

23-288

Date: 

May 1, 2024

Author(s):

Deep Tripathi, Richard Morin, Mohamed Lamine Kateb, Arezki Tagnit-Hamou

Publication:

Materials Journal

Abstract:

As ground glass pozzolan has recently been considered a supplementary cementitious material by the Canadian Standard of Association (CSA A-3000) and the American Standard (ASTM-1866), there is limited study on ground glass utilization on site. So, in this study, several sidewalk projects were performed by the SAQ industrial chair, the University of Sherbrooke, Quebec, Canada, from 2014 to 2017 on fields with different proportions of ground glass (i.e., 10, 15, and 20%) in different conditions are considered in such a cold climatic region. Sidewalks are a non-structural plain concrete element that is among the most exposed to chloride, and freezing and thawing in saturated conditions of municipal infrastructures. Coring campaigns were carried out after several years of exposure to these concrete (between 5 to 8 years). The results of core samples extracted from the sites were compared to the laboratory-cured samples taken during the casting. These laboratory concrete mixtures were tested for fresh, hardened (compressive strength), and durability (freeze-thaw, scaling resistance, chloride ion penetrability, electrical resistivity, and drying shrinkage) properties (up to 1 year). The results show that ground glass concrete performs very well at all cement replacement in all manners in terms of long-term performance. Besides that, using ground glass pozzolan in field projects also decreases carbon footprint, and environmental and glass disposal problems.

DOI:

10.14359/51740781


12345...>>

Results Per Page