ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 957 Abstracts search results

Document: 

SP357_09

Date: 

April 1, 2023

Author(s):

Sana Amir, Cor van der Veen, Joost Walraven, and Ane de Boer

Publication:

Symposium Papers

Volume:

357

Abstract:

A large number of bridges in the Netherlands have transversely post tensioned deck slabs cast in-situ between flanges of precast girders and were found to be critical in shear when evaluated by Eurocode 2. To investigate the bearing (punching shear) capacity of such bridges, a 1:2 scale bridge model was constructed in the laboratory and static tests were performed by varying the transverse prestressing level (TPL). A 3D solid, 1:2 scale model of the real bridge, similar to the experimental model, was developed in the finite element software DIANA and several nonlinear analyses were carried out. It was observed that the experimental and numerical ultimate load carrying capacity was much higher than predicted by the governing codes due to lack of consideration of compressive membrane action (CMA). In order to incorporate CMA in the Model Code 2010 (fib 2012) punching shear provisions for prestressed slabs, numerical and theoretical approaches were combined. As a result, sufficient factor of safety was observed when the real bridge design capacity was compared with the design wheel load of Eurocode 1. It was concluded that the existing bridges still had sufficient residual bearing capacity with no problems of serviceability and structural safety.

DOI:

10.14359/51738765


Document: 

SP357_07

Date: 

April 1, 2023

Author(s):

Antonio Ramos, Brisid Isufi, and Rui Marreiros

Publication:

Symposium Papers

Volume:

357

Abstract:

Significant research efforts have been devoted to achieving high performance of slab – column connections subjected to lateral loading. Solutions such as using stirrups and headed studs have been shown to work well. With the development of concrete materials with enhanced properties, new possibilities have arisen to employ solutions that are easy to apply and cause less congestion of reinforcement. A total of nine tests on flat slab specimens subjected to combined gravity and lateral loading are discussed, including two new specimens with High Performance Fiber Reinforced Concrete (HPFRC) over a limited region near the column. The main experimental variables were the flexural reinforcement ratio and the punching shear improvement method: none, headed studs, High Strength Concrete (HSC) or HPFRC. It is shown that excellent behavior is achieved with a relatively small amount of HPFRC, extended up to 1.5 times the effective depth of the slab from the face of the column. Punching was completely avoided until the end of the loading protocol (6% drift) for the specimens with HPFRC, whereas reference specimens without punching shear reinforcement failed at 1% drift and specimens with HSC reached 3% drifts. Additionally, the use of HPFRC led to an increased unbalanced moment transfer capacity and lateral stiffness, though this effect was more pronounced for specimens with lower flexural reinforcement ratio.

DOI:

10.14359/51738763


Document: 

SP357_08

Date: 

April 1, 2023

Author(s):

Antonio Mari, Pablo G. Fernandez, Eva Oller, and Antoni Cladera

Publication:

Symposium Papers

Volume:

357

Abstract:

Reinforced concrete slabs can be subjected simultaneously to transverse loads and in-plane tensile forces, as it occurs in top slabs of continuous box girder bridges at intermediate supports, or in flat slabs supported on columns, subjected to horizontal loads. To study the effects of in-plane forces in the slab punching-shear strength, an experimental and theoretical investigation was carried out, which is described in this paper. Five square slabs of 1650 mm (42”) side and 120 mm (4.7”) thickness were tested under a centered transverse point load and different degrees of uniaxial in-plane tensile force. Numerical predictions using non-linear finite element analyses were performed to help in the experiments design. Furthermore, the punching-shear mechanical model, Compression Chord Capacity Model (CCCM), was extended to incorporate the effects of in-plane tensile forces. The experimental results showed that the punching strength linearly decreases with the level of applied tensile force and, if cracking in the slabs is produced by the tensile force, yielding of the reinforcement and further reduction may take place. Excellent agreement was found between theoretical predictions and tests results. Furthermore, the CCCM was verified with available results of punching tests with uniaxial and biaxial tensile forces, obtaining very good results.

DOI:

10.14359/51738764


Document: 

SP357_04

Date: 

April 1, 2023

Author(s):

D. Z. Yankelevsky, V. R. Fledgun, and Y. S. Karinski

Publication:

Symposium Papers

Volume:

357

Abstract:

An interim report reviewing several insights that have been gained in our ongoing research on punching shear capacity of RC flat slabs subjected to impact loads is presented. A typical RC building with flat slabs that is designed according to current standards is discussed. A collapse scenario of a top slab with failed connections is considered and its impact with a slab underneath is analyzed. The suitability of standards’ design criteria to provide safe design against punching shear is evaluated.

It was found that larger span slabs undergo heavier damage, therefore we focus on shorter span slabs to examine the lower bound damage. Falling from a floor height causes complete failure of the impacted slab-column connection. The slab around the column is severely damaged and the bending and shear reinforcement is ruptured. Rebars’ yield occurs within milliseconds from impact, while the impacted slab hardly starts its downward displacement. A major part of the impacted slab moves uniformly with severe damage concentration at the slab-column connection region.

The complex impact response of the slabs is analyzed, and new insights are gained. It demonstrates that the cur-rent static-loading based design standards cannot provide resilience to flat slab connections under impact load-ing and therefore cannot prevent a progressive collapse scenario.

DOI:

10.14359/51738760


Document: 

SP357_02

Date: 

April 1, 2023

Author(s):

Scott Alexander, Carlos Ospina, and Eva Lantsoght

Publication:

Symposium Papers

Volume:

357

Abstract:

In design, the sectional depth of reinforced concrete spread footings is usually governed by design code provisions for punching shear, which are derived primarily from experiments on slab-column connections. Previous experiments have shown that the punching behavior of concentrically loaded spread footings differs from that of slab-column connections. This paper describes punching of a concentrically loaded spread footing by combining conventional strut and tie modeling with the concept of an arch strip, part of the Strip Model. By itself, the Strip Model describes the behavior of slab-column connections under a variety of loading conditions. For spread footings, Strip Model concepts need to be combined with conventional strut and tie modeling to adequately describe load transfer in a concentrically loaded spread footing. Two methods are explored, each producing closed-form expressions for the footing capacity that agree well with experimental results (112 tests from the literature). The analyses make it possible to estimate the fraction of footing load that is carried by conventional strut and tie behavior. The experimental results are also compared to punching shear capacities in accordance with ACI 318-19. The Strip Model produces results with roughly the same average test-to-predicted ratio (in the order of 1.3) as ACI 318-19 but with a lower coefficient of variation (10.3% compared to 15.8%). This work shows how a lower-bound plasticity-based model can be used for the practical case of determining the capacity of reinforced concrete spread footings failing in punching shear.

DOI:

10.14359/51738756


12345...>>

Results Per Page