ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 31 Abstracts search results

Document: 

SP-339_05

Date: 

March 1, 2020

Author(s):

Sugeng Wijanto, Nelson M. Angel, José I. Restrepo, and Joel P. Conte

Publication:

Symposium Papers

Volume:

339

Abstract:

The rapid development of tall building construction has taken place in Indonesia over the last decade, especially in its capital, Jakarta. Reinforced concrete has been the preferred material of choice used for these buildings because it is economical and is easily handled by local contractors. Along with this rapid development, the Indonesian codes for structural design practices have experienced major changes, following the latest development of USA building design codes and performance-based design guidelines, especially those related to seismic design. This paper describes the latest seismic code in Indonesia and presents the state-of-the-practice for the design of tall buildings there. It also discusses the use of performance-based seismic design as an alternative method of design, considering the risk-targeted maximum and service earthquakes, in the structural design of a tall residential tower in Jakarta.


Document: 

SP-339_04

Date: 

March 1, 2020

Author(s):

Mark Sarkisian, Eric Long, and David Shook

Publication:

Symposium Papers

Volume:

339

Abstract:

Performance based seismic design (PBSD) has created new opportunities for enhanced performance, improved cost efficiencies, and increased reliability of tall buildings. More specifically, flexibility with initial design methods and the utilization of response history results for design, not just verification, have emerged. This paper explores four refined design methods made available by the employment PBSD to influence seismic performance and identify areas of importance. First is the initial proportioning of reinforcement to encourage plastic hinge behavior at specific locations. Second is the initial proportioning of wall thicknesses and reinforcements to encourage a capacity-based design approach for force-controlled actions. Third is the mapping of observed strain demands in shear walls to specific detailing types such as ordinary and special boundary zones. Fourth is an efficient envelope method for the design of foundations. Through these design methods, initial proportioning can be conducted in a more refined way and targeted detailing can result in cost savings. A case study of a recently designed high-rise residential building demonstrates that cost savings can be achieved with these methods.


Document: 

SP326-76

Date: 

August 10, 2018

Author(s):

Isabella G. Colombo, Matteo Colombo, Marco di Prisco, Graziano Salvalai, and Marta M. Sesana

Publication:

Symposium Papers

Volume:

326

Abstract:

In the framework of the European project EASEE (Envelope Approach to improve Sustainability and Energy efficiency in Existing multi-storey multi-owner residential buildings), a textile reinforced concrete sandwich-prefabricated panel has been designed for the energy retrofitting of existing building built between 1925 and 1975. The feasibility of the solution has been evaluated by assessing the production process and the structural behaviour. Thanks to the application of panels on a test façade at Politecnico di Milano and on a whole demo-building in Cinisello Balsamo, it was possible to evaluate all the topics related to handling and mounting and to monitor the energy performance of the system.

During summer and winter monitoring, superficial temperatures were collected: sensors were placed on panel extrados, in the cavity between panel and existing wall and on the internal surface of existing wall. In addition, the thermal transmittance of the retrofitted wall was measured. These data allow evaluating the overall efficiency of the adopted system.

Using superficial temperatures as input data, the effect of temperature variation on the mechanical behaviour of a sandwich panel has been evaluated through a finite element analysis performed in Abaqus on a 3D model.


Document: 

SP326-57

Date: 

August 10, 2018

Author(s):

Vladimir Kakusha, Oleg Kornev, Mikhail Kovalev, Andrey Lapshinov, and Egor Litvinov

Publication:

Symposium Papers

Volume:

326

Abstract:

This paper represents the summary of the design criteria and construction details for the GFRP (glass fiber-reinforced polymer) reinforced foundation slab. The idea was to improve the foundation slab durability by using GFRP bars. This included the use of GFRP bars as main longitudinal reinforcement for the foundation slabs which represents the world first application of this type. During the design procedures, several non-standard issues related to GFRP reinforcement have been solved. The method statement has been created for Construction Company with the consideration of the specific properties of GFRP bars in comparison to steel reinforcement. Before the casting of concrete, strain gauges were attached to GFRP bars and concrete surface to control the strains during the erection and the maintenance of building.


Document: 

SP305

Date: 

September 1, 2015

Publication:

Symposium Papers

Volume:

305

Abstract:

Editors: Mario Alberto Chiorino, Luigi Coppola, Claudio Mazzotti, Roberto Realfonzo, Paolo Riva

With the dawn of twenty-first century, the world has entered into an era of sustainable development. The main challenge for concrete industry is to serve the two major needs of human society, the protection of the environment, on one hand, and - on the other hand - meeting the infrastructural requirements of the world growing population as a consequence of increase in both industrialization and urbanization. In the past, concrete industry has satisfied these needs well. Concrete is an environmentally friendly material useful for the construction of vast infrastructures. Skyscrapers, highway bridges, roads, water retaining structures and residential buildings are all testimonials to concrete’s use and versatility. However, for a variety of reasons the situation has changed dramatically in the last years. First of all, the concrete industry is the largest consumer of natural resources. Secondly, portland cement, the binder of modern concrete mixtures, is not as environmentally friendly. The world’s portland cement production, in fact, contributes to the earth’s atmosphere about 7% of the total CO2 emissions, CO2 being one of the primary greenhouse gases responsible for global warming and climate change. As a consequence, concrete industry in the future has to face two antithetically needs. In other words how the concrete industry can feed the growing population needs being – at the same time - sustainable?

ACI Italy Chapter has been playing a significant role in the last years in the broad area of concrete technology in Italy and, in particular, in the field of concrete durability and sustainability. ACI Italy Chapter has become increasingly involved in research and development dealing with durability and sustainability issues such as reduction in CO2 emissions, use of recycled materials and innovative products, design of durable structures and maintenance, repair and refurbishment of concrete infrastructures.

In October 2015, the American Concrete Institute Italy Chapter (ACI IC) and the Department of Civil, Chemical, Environmental, and Material Engineering (DICAM) of the University of Bologna sponsored the First International Workshop on “Durability & Sustainability of Concrete Structures” in Bologna (Italy). The workshop was co-sponsored by the American Concrete Institute and ACI Committee 201. The proceedings of the workshop were published by ACI IC as SP305. The proceedings consist of forty-eight refereed papers concerning reduction in green house gases in cement and concrete industry, recycled materials, innovative binders and geopolymers, Life Cycle Cost Assessment in concrete construction, reuse and functional resilience of reinforced concrete structures, repair and maintenance, testing, inspection and monitoring.

Many thanks are extended to the members of the technical paper review panel. Without their dedicated efforts it would not have been possible to publish the proceedings. The cooperation of the authors in accepting reviewers’ comments and suggestions and in revising the manuscripts accordingly is greatly appreciated.

Note: The individual papers are also available. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP-305


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.