ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 31 Abstracts search results

Document: 

SP-349_48

Date: 

April 22, 2021

Author(s):

Hang Tran, Victor Brial, Thomas Sanchez, Luca Sorelli, Claudiane Ouellet-Plamondon, David Conciatori, Houshang D. Alamdari, Mario Fafard, Laurent Birry And Martin Beaulieu

Publication:

Symposium Papers

Volume:

349

Abstract:

Spent pot lining (SPL) is an industrial waste generated from aluminum electrolysis cells. LCLL-ash is the inert by-product coming from the treatment of the SPL refractory fraction at the SPL treatment plant (Jonquière, Canada). LCLL-ash has been ground to the fineness of the cement to substitute a part of cement in cement pastes. However, LCLL-ash contains higher contents of silica and alumina compared to Portland cement, which can affect the composition, the morphology and the mechanical properties of the binder hydrates (e.g. the Calcium-[Aluminum]- Silicate Hydrates, C-[A]-S-H) with an important effect on the durability. This paper focuses on the investigation of the microstructure and the mechanical properties of LCLL blended cement pastes by applying multiple techniques including scanning electron microscopy, X-ray diffraction, and microindentation at the level of the cement paste. The water-to-binder ratio (w/b) is fixed at 0.35. The effect of the different proportions of LCLL-ash on the microstructural and mechanical properties of blended cement pastes is presented and discussed with relation to the normal Portland cement paste.

DOI:

10.14359/51732781


Document: 

SP193-19

Date: 

August 1, 2000

Author(s):

S. Pavlenko and I. Rekhtin

Publication:

Symposium Papers

Volume:

193

Abstract:

Today, in Russia, carbide - silicon and aluminate - silicate packing masses are generally used for lining blast - furnace chutes. They contain re-fractory clay, coal-tar pitch and resins as binders which emit carcinogenic sub-stance dangerous for a human organism. Thirty compositions of chute concrete masses excluding any carcinogenic substance were studied and tested on a chute by the Siberian State University of Industry in conjunction with the Kuznetsk Metallurgical Combine company. The best results were obtained with the following composition: 75 % fused electrocorundum, 20 % refractory clay, 5 % high-alumina cement and 7.3 % water (above 100 %). Thermal resistance in heat changes was above 25 cycles at 800 ‘C, apparent density was 2.54 to 2.75 g/cm3, compressive strength was 76.6 and 79.2 MPa at 110 ‘C and 1450 ‘C, respectively, slag resistance was 0.1 to 0.2 mm at 1450 ‘C, firing shrinkage was 0.2 % with no corrosion observed. The composition developed increased the service life by 10 times compared with the composition generally applied and does not emit any carcinogenic matters. However, in view of the economic crisis and high cost of the electrocorundum, its application is limited. Therefore, we have developed compositions with a high - alumina product (HAP), the waste from the Yurga abrasive works, as a replacement for the electrocorundum. They are as follows: (i) 35 % HAP, 20 % fireclay powder, 15% refractory clay, 30 % waste from the production of silicon carbide; (ii) 48 % HAP, 20 % fireclay powder, 15 % refractory clay, 32 % waste of silicon car-bide with a particle size distribution of 3 to 0 mm. These compositions exhibit < 50 % reduction in strengths (from 80 to 40 MPa) at 1450 ‘C with other indices (slag resistance, iron resistance, apparent density and shrinkage) being the same as for compositions containing pure fused electrocorundum. Their cost is simi-lar to that of the concrete masses generally used but the service life is 4 times longer which was proved by testing in a central chute of a blast furnace.

DOI:

10.14359/5829


Document: 

SP126-27

Date: 

August 1, 1991

Author(s):

J. Deja, J. Malolepszy and G. Jaskiewicz G. Jaskiewicz

Publication:

Symposium Papers

Volume:

126

Abstract:

Studies of slag activation by alkalies have been carried out since 1973 at the Institute of Building and Refractory Materials, Academy of Mining and Metallurgy, in Cracow, Poland. Laboratory tests were followed by production of the activated slag on a large scale. It appeared that the new cementing material composed of the granulated blast furnace slag mixed with an alkaline activator showed high strength and corrosion resistance. The present work deals with the problem of reinforcing steel corrosion in the alkali-activated slag mortar exposed to the attack of concentrated chloride solution. The observations of reinforcement in ordinary portland cement (OPC) mortars, OPC plus silica fume (SF) mortar, or OPC plus limestone flour mortar were carried out simultaneously. The resistance of alkali-activated slag mortar to the attack of a solution of high Cl- concentration was proved previously. The effective, protective action of the alkali-activated slag mortar was confirmed by electrochemical measurements and weight loss determination after 365 days' exposure to a chloride solution. A similar effect was found in the case of silica fume or limestone flour addition to the OPC mortar, but the corrosion of the reinforcement was clearly visible, as shown by corrosion pits in the reference standard OPC mortar samples.

DOI:

10.14359/2298


Document: 

SP81-14

Date: 

November 1, 1984

Author(s):

David R. Lankard and Jeffrey K. Newell

Publication:

Symposium Papers

Volume:

81

Abstract:

Steel fiber reinforced concretes (SFRC) are typically prepared by adding the fiber along with the other concrete ingredients in the mixing operation. Using this "premix" approach, it is possible to incorporate up to about 265 lb/yd3 (2 volume percent) of fiber into the concrete. At fiber contents in excess of 2 volume percent, the SFRC becomes difficult or impossible to mix and place. Inasmuch as the improvements in concrete properties attributed to the fibers increase as a function of increasing fiber content, this situation places a limit on the ultimate property development in SFRC prepared using the premix approach. Recently, a procedure has been developed wherein steel fiber contents up to 18 volume percent have been provided in SFRC composites. The engineering properties of these highly reinforced composites are discussed along with a number of successful applications.

DOI:

10.14359/6456


Document: 

SP74-08

Date: 

August 1, 1982

Author(s):

M.S. Crowley

Publication:

Symposium Papers

Volume:

74

Abstract:

Refining and petrochemical operations, such as fluid catalytic cracking units, naphtha reformers, incinerators, and furnaces subject refractory linings to a variety of aggressive actions, such as erosion, spalling, slagging, and chemical attack. A number of different types of monolithic refractory material are used to resist these actions. The types of refractory failure commonly experienced in refineries and petrochemical plants are discussed and methods of repairing or replacing the deteriorated areas are outlined. The effect of placement techniques, curing conditions, and start up procedures on the serviceability of repaired sections is also discussed.

DOI:

10.14359/6397


12345...>>

Results Per Page