International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 772 Abstracts search results

Document: 

24-132

Date: 

June 18, 2025

Author(s):

Deuckhang Lee, Min-Kook Park, Yuguang Yang, and Kang Su Kim

Publication:

Structural Journal

Abstract:

No practically viable method exists yet to provide minimum shear reinforcements into pretensioned precast hollow-core slab (PHCS) units produced through the automated extrusion method. Subsequently, web-shear strength of PHCS units with untopped depth greater than 315 mm (12.5 in) should be reduced by half according to the current ACI 318 shear design provision. Meanwhile, continuous precast floor construction has been commonly adopted in current practices by utilizing cast-in-place (CIP) topping and/or core-filling concrete. However, shear test results on continuous composite PHCS members subjected to combined shear and negative bending moment are very limited in the literature. To this end, this study conducts shear tests of thick composite PHCS members with untopped depths greater than 315 mm (12.5 in) and various span-depth ratios, subjected to negative bending moments, where noncomposite and composite PHCS units subjected to shear combined with positive bending were also tested for comparison purposes. Test results showed that the flexure-shear strength can dominate the failure mode of continuous PHCS members rather than the web-shear failure, depending on the presence of CIP topping concrete and shear span-depth ratio. In addition, it was also confirmed that the shear strength of composite PHCS members is marginally improved by using the core-filling method under negative bending moment at continuous support, and thus its shear contribution seems not fully code-compliant and satisfactory to that estimated by using ACI 318 shear design equations.

DOI:

10.14359/51748928


Document: 

24-373

Date: 

May 15, 2025

Author(s):

In-Seok Yoon, Hyeongyeop Shin, and Thomas H.-K. Kang

Publication:

Structural Journal

Abstract:

Corrosion of prestressing steel can threaten the durability of prestressed concrete. To ensure the durability of unbonded post-tensioning (PT) systems, it is crucial to investigate the effects of construction defects such as grease leakage and high-density polyethylene (HDPE) sheath damage. This study quantified the thickness of grease coating (PT-coating) and HDPE sheath damage as experimental variables. An accelerated corrosion test was conducted in two environments: 1) chloride ions only (Cl-) and 2) both chloride ions and dissolved oxygen (Cl- + DO). The corrosion current density and weight loss of prestressing strands and the suspended concentration density of corrosion cell solution were measured to quantify the corrosion performance. Increasing the grease coating thickness over 0.3 mm (0.012 in.) did not significantly enhance corrosion resistance. Realistic levels of HDPE sheath damage had no significant detrimental effects on durability; however, excessive HDPE sheath area loss must be avoided for long-term durability. It was examined to quantify the interrelationship between three data: electrochemical measurement, weight loss, and suspended concentration density as quantitative corrosion data. The findings of this study can serve as a basis for developing durability-related provisions, as well as controlling the construction defects of unbonded PT systems in field applications.

DOI:

10.14359/51746823


Document: 

23-304

Date: 

May 1, 2025

Author(s):

Gray Mullins, Rajan Sen, David Ostrofsky, and Kwangsuk Suh

Publication:

Structural Journal

Volume:

122

Issue:

3

Abstract:

This study characterized pitting corrosion in prestressed piles, linked it to stress concentration factors through ultimate strength tests, and incorporated the findings into a simple predictive damage assessment model. Six one-third-scale Class V concrete prestressed piles were exposed for 38 months to outdoor tidal cycles simulating a marine environment. At the end of exposure, 24 strands were extracted from the piles, and corrosion loss along the strands was quantified using a new Pascal’s law-based strand profiler. This identified regions of locally higher steel loss caused by pitting corrosion. The same data set was used to confirm gravimetric loss measurements by summing localized section losses over the specimen length. Profiler data was complemented by microscopic imaging to further define pitting geometry. Ultimate load tests were conducted to examine the effect of pitting on residual tensile strength and ductility. Similitude principles were used to develop a model for predicting in-service stress in pile strands using available inspection report crack width data.

DOI:

10.14359/51745641


Document: 

23-205

Date: 

April 9, 2025

Author(s):

Wen-Liu Xu, Li-Cheng Wang, Yong-Qin Liang, Fei-Fan Feng

Publication:

Structural Journal

Abstract:

An approach to improve the progressive collapse resistance of conventional RC frame structure was put forth by using unbonded post-tensioning strand (UPS). Two UPSs with a straight profile are mounted at the bottom of the beam section. A static loading test was conducted on an unbonded prestressed RC (UPRC) beam-column sub-assemblage under a column removal scenario. The structural behaviors of the test specimen, such as the load-carrying capacity, failure mode, post-tensioning force of the UPSs, and rebar strain, were captured. By analyzing the results of the tested substructure, it was found that the compressive arch action (CAA) and catenary action (CTA) were sequentially mobilized in the UPRC sub-assemblage to avert its progressive collapse. The presence of UPSs could significantly improve the load-carrying capacity of conventional RC structures to defend against progressive collapse. Moreover, a high-fidelity finite element (FE) model of the test specimen was built by using the software ABAQUS. The FE model was validated by the experimental results in terms of the variation of vertical load, horizontal reaction force, and post-tensioning force of the UPSs against middle joint displacement (MJD). Finally, a theoretical model was proposed to evaluate the anti-progressive collapse capacities of UPRC sub-assemblages. It was validated by the test result as well as by the FE Models of the UPRC sub-assemblages which were calibrated using the available experimental data.

DOI:

10.14359/51746754


Document: 

24-290

Date: 

March 25, 2025

Author(s):

Peter H. Bischoff, Wassim Nasreddine, Hani Nassif

Publication:

Structural Journal

Abstract:

Design recommendations are presented for calculating the immediate deflection of cracked prestressed concrete members under service load. Inconsistency and sometimes confusion regarding the calculation of immediate deflection for the different approaches presently available highlight the need for a rational approach to computing deflection. The ACI 318-19 approach for reinforced (nonprestressed) concrete is broadened to include prestressed concrete. This involves the implementation of an effective moment of inertia taken together with an effective eccentricity of the prestressing steel used to define the effective curvature and/or camber from the prestressing force. Proposed revisions to ACI 318 are presented for prestressed Class T and Class C flexural members and clear steps are provided for calculating immediate deflection. The effectiveness of the new approach is validated against an extensive database of test results, showing reasonable accuracy and reliability in predicting deflections. The paper concludes with practical recommendations for implementation and a worked-out example to illustrate the proposed methodology. These findings aim to enhance the accuracy and consistency of deflection predictions in prestressed concrete design, contributing to better serviceability and performance of concrete structures.

DOI:

10.14359/51746721


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer