ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 138 Abstracts search results

Document: 

20-217

Date: 

May 1, 2021

Publication:

Materials Journal

Volume:

118

Issue:

3


Document: 

20-221

Date: 

March 1, 2021

Author(s):

Xing Ming, Mingli Cao, Li Li, and Hong Yin

Publication:

Materials Journal

Volume:

118

Issue:

2

Abstract:

In this paper, a novel kind of cement blend with high temperature resistance and self-healing abilities is tailored by incorporating fly ash (FA) and calcium carbonated whisker (CW). The physiochemical changes after high temperature exposure and water re-curing were examined in this blended cement. Incorporation of FA and CW would be able to lower carbon dioxide footprint of cement manufacture and the resulting cementitious composite demonstrates high temperature resistance and self-healing performance. Due to pozzolanic effect of FA, formation of ceramic phases, rehydration process, and carbonation, the deterioration in residual strengths and microstructure after high temperature exposure can be partially recovered during the self-healing process.

DOI:

10.14359/51729332


Document: 

19-454

Date: 

November 1, 2020

Author(s):

Deborah Glosser, O. Burkan Isgor, and W. Jason Weiss

Publication:

Materials Journal

Volume:

117

Issue:

6

Abstract:

Thermodynamic modeling is an established tool that can use binder composition to predict reaction products and pore solution chemistry in hydrating cementitious systems. Thermodynamic simulations rely on the assumption that all reactions reach equilibrium; however, reacting systems are inherently dynamic. An established kinetic model exists and is used in conjunction with thermodynamic Gibbs free energy minimization software (GEMS) to provide quasi-equilibrium inputs for modeling hydrating cement clinkers. However, no similar model has existed to explicitly model the non-equilibrium reactions of cement with supplementary materials. Here, a framework to compute kinetic inputs for use in time-dependent thermodynamic calculations of cement/amorphous silica systems is demonstrated. Reaction products, pore solution composition, and pH are modeled and compared with experimental measurements for multiple ordinary portland cement (OPC)/SiO2 binders at varying replacement levels and water contents. The results show that when time-dependent clinker and SiO2 reactions are modeled together, the hydraulic reactions and the pozzolanicity of SiO2 can be accurately predicted.

DOI:

10.14359/51728127


Document: 

19-434

Date: 

September 1, 2020

Author(s):

T. Hemalatha, Arjun S, and B. S. Sindu

Publication:

Materials Journal

Volume:

117

Issue:

5

Abstract:

This study investigates the feasibility of using induction furnace slag as a substitute for river sand/manufactured sand (M-sand) in the production of concrete. The properties of concrete made with slag fine aggregate is compared with concrete made of river sand and M-sand. Experimental studies have been carried out on concretes made of three types of aggregates and two types of cement (ordinary portland cement [OPC] and portland pozzolana cement [PPC]). Mechanical and durability property tests performed according to standards showed that the characteristics obtained for the concrete made with slag aggregate is comparable with that of the concrete made with river sand and M-sand. This study suggests the 100% replacement of conventional fine aggregate with slag fine aggregate for the production of concrete without compromising the strength and durability characteristics. Further, the study demonstrates that with the suitable measures, the high water absorption of slag aggregate can be compensated.

DOI:

10.14359/51725981


Document: 

19-355

Date: 

September 1, 2020

Author(s):

Diogo Henrique de Bem and Ronaldo A. Medeiros-Junior

Publication:

Materials Journal

Volume:

117

Issue:

5

Abstract:

No widely accepted method is available to assess the efflorescence in small-scale mortar specimens. Thus, the analysis and determination of parameters that actually have an influence on the occurrence of efflorescence in cementitious materials become difficult to be accomplished, especially considering that its appearance in natural field conditions can take months or even years to happen. This paper has the objective to compare eight small-scale accelerated test methods for the assessment of efflorescence in lime-cement mortars and then to evaluate their sensibility to variations in the mixture composition. The results show that the method in which a water column introduces pressure produced the highest amount of efflorescence in the smallest time. The method was able to clearly identify the impact of silica fume towards the refinement of the porous microstructure and the efflorescence reduction. This study demonstrates that 28 days is enough time to finalize the accelerated testing proposed.

DOI:

10.14359/51724627


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.