In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest Mid Atlantic
Feedback via Email Phone: 1.248.848.3800
ACI Global Home Middle East Region Portal Western Europe Region Portal
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 563 Abstracts search results
Document:
SP-362_03
Date:
June 5, 2024
Author(s):
Denny Coffetti, Simone Rapelli and Luigi Coppola
Publication:
Symposium Papers
Volume:
362
Abstract:
The uncontrolled urban development of the last century caused high land consumption and strong non-renewable natural raw materials utilization. To solve the problems generated by soil sealing, the building sector has developed a pervious concrete manufactured with Portland cement and natural aggregates. Although this mixture mitigates the effects of soil sealing, the production of a Portland-based pervious concrete has a strong environmental impact. The purpose of this research is to investigate an alkali-activated slag-based pervious concrete (AASPC) manufactured with tunnel muck (TM) as recycled aggregate instead of natural sand and gravel and to evaluate the relationship between aggregate size and physico-mechanical properties of no-fines concrete. Six different single-sized recycled aggregates from tunneling works (drilling and blasting technique) were used to produce six different AASPCs that were characterized in terms of compressive strength, porosity, and water permeability under constant and variable flow. Experimental results evidenced that the average size of aggregates strongly influences the open and total porosity of the materials, thus determining very different compressive strengths (from about 6 MPa for concrete with 16-22 mm gravel to 20 MPa for concrete made with 1-2 mm sand) and water permeability. Finally, the environmental impact of these mixtures (energy requirements, CO2 emissions, and natural raw materials consumption) is strongly reduced in comparison to traditional Portland-based no-fines concrete at equal strength class.
The uncontrolled urban development of the last century caused high land consumption and strong non-renewable natural raw materials utilization. To solve the problems generated by soil sealing, the building sector has developed a pervious concrete manufactured with Portland cement and natural aggregates. Although this mixture mitigates the effects of soil sealing, the production of a Portland-based pervious concrete has a strong environmental impact.
The purpose of this research is to investigate an alkali-activated slag-based pervious concrete (AASPC) manufactured with tunnel muck (TM) as recycled aggregate instead of natural sand and gravel and to evaluate the relationship between aggregate size and physico-mechanical properties of no-fines concrete.
Six different single-sized recycled aggregates from tunneling works (drilling and blasting technique) were used to produce six different AASPCs that were characterized in terms of compressive strength, porosity, and water permeability under constant and variable flow.
Experimental results evidenced that the average size of aggregates strongly influences the open and total porosity of the materials, thus determining very different compressive strengths (from about 6 MPa for concrete with 16-22 mm gravel to 20 MPa for concrete made with 1-2 mm sand) and water permeability. Finally, the environmental impact of these mixtures (energy requirements, CO2 emissions, and natural raw materials consumption) is strongly reduced in comparison to traditional Portland-based no-fines concrete at equal strength class.
DOI:
10.14359/51740873
CI4605He
May 1, 2024
Jialuo He, Thippapha Aloundeth, Zhipeng Li, and Xianming Shi
Concrete International
46
Issue:
5
Increasing use of deicing chemicals can pose a great risk of premature failure of concrete infrastructure such as pavements and bridge decks. This article discusses an immersion study of ordinary portland cement and high-volume fly ash mortars in MgCl2 solution under room temperature and its influence on mechanical properties and transport property.
SP-354_28
July 1, 2022
Yufeng Li, Serina Ng, Gan Wang, Lei Liu, Long Wang
354
In order to improve the durability of concrete, a novel waterproofing agent was developed and its effect on concrete performance was studied in detail. Through the research, it is found that when stearic acid is present in the form of ammonium salt in the waterproofing agent, concrete has the highest compressive strength and the best waterproof performance, and the optimum nNH3: noctadecanoic acid is 1.34, woctadecanoic acid: wamines is 6.45. When the dosage of the waterproofing agent in concrete is 10-30 kg/(1 m³ concrete), the 48h water absorption rate of concrete is reduced by 44.7%~57.4%, and strength increases by at least 30%. By comparing with other waterproofing agents of the same type at home and abroad, it is found that the waterproofing agent provided in this paper has the lowest chloride ion permeability, concrete compactness, and water absorption. After adding a waterproofing agent to the concrete, the chloride migration coefficient and electric flux of concrete are reduced, and the reduction was 37.7% and 22.6%, respectively. The waterproofing agent is a solid-liquid mixture.
10.14359/51736084
SP-355_16
Lukáš Húlek, Michal Bačuvčík, Ivan Janotka, Jakub Gašpárek, Peter Paulík
355
During the diagnostics of 100-year-old concrete bridges carried out between 2014 and 2022-4 mm (0.078- 0.157 in.) protective render coats (PRC) were found on nine bridges in Slovakia. Most of the PRCs measured appeared almost impermeable, showing a permeability coefficient below 0.246 × 10-16 m2 (0.293 × 10-16 yd.2). At these sites, the underlying concrete was carbonated to a depth of 0 up to 2 mm (0.078 in.), while under spalled PRC was the measured depth of carbonation of concrete up to 80 mm (3.15 in.). The field experiments were followed in a laboratory by the development of PRC from currently available materials. The newly-developed PRCs are characterized by a high weight ratio of ordinary Portland cement (OPC) to natural silica sand, low water content, and, at the same time, capable of being applied in thin layers. The PRCs were applied to a surface of a concrete panel and were tested for permeability (the Torrent method), adhesion (the square target method), crack propagation, microstructure, and pore structure. The resistance to carbonation of the C20/25 strength class (2900/3625 psi) base concrete and those that were PRC-protected were verified by an accelerated carbonation test [20 °C (68 °F)/60% RH/20% vol. CO2].
10.14359/51736022
SP-355_32
Vincenzo Romanazzi, Marianovella Leone, Francesco Tondolo, Alessandro Pasquale Fantilli, Maria Antonietta Aiello
The huge quantity of natural aggregates extracted every year and used in the concrete industry is causing harmful consequences on biodiversity, water turbidity, water table level and landscape, and global warming as well. In this context, many studies focused on the possibility to use waste tyre recycled aggregates as partial replacement for stone aggregates in concrete production. Generally, it has been observed that several mechanical properties, such as compressive strength and modulus of elasticity, significantly decrease when rubber content is increased. On the other hand, rubberized concrete (RuC) showed a more ductile behavior than ordinary Portland cement concrete, in addition to a greater damping and energy dissipation capacity. In this paper, the compressive and flexural strength, water permeability, and thermal conductivity of five concrete mixtures with increasing percentages of rubber particles as a partial replacement for natural aggregates have been investigated. As a result, a reduction in compressive strength has been observed only in RuC mixtures with substitutions greater than 12% of the total aggregates, whereas the flexural strength remained roughly constant. Moreover, the results of water permeability and thermal conductivity tests showed respectively a decrease in water penetration and an improvement of the concrete thermal isolation due to the presence of rubber particles.
10.14359/51736044
Results Per Page 5 10 15 20 25 50 100