ACI Global Home Middle East Region Portal Western Europe Region Portal
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 1647 Abstracts search results
Document:
24-076
Date:
May 14, 2025
Author(s):
A Selva Ganesa Moorthi and G Appa Rao
Publication:
Structural Journal
Abstract:
Prefabricated structural wall buildings exhibit superior strength, stiffness, and ductility under seismic loading effects. Segmental wall construction is popular due to easy transportation and on-site assembly. The present study deals with the performance of precast wall elements connected through welded plates vertically subjected to the seismic loading conditions. The study proposes welded plates with varying thickness to connect two structural walls on one or both faces. Full-scale quasi-static load tests have been performed to analyze the seismic behavior of the connections. The conventional foundation with loading beams at top and bottom, to test the structural walls, was replaced with a special steel shoe set-up, achieving the real conditions, to minimize the testing cost. It has been observed that the connections using mild steel plates achieve the most desirable characteristics, like plate yielding, energy dissipation, and ductility. High-strength steel plates fail in brittle mode with poor post-peak response, indicating precautions in selecting the type of connecting steel plates in precast construction. The proposed connecting plates improve the ductility and post-peak response for easy retrofitting of the precast wall system. The study brings out improvement in the seismic performance, selection of materials, and connection detailing for resilient precast structures.
DOI:
10.14359/51746816
24-061
May 8, 2025
Tianyu Xiao and Sen Du
Materials Journal
Engineered cementitious composites (ECC), a prominent innovation in the realm of concrete materials in recent years, contain a substantial amount of cement in their composition, thereby resulting in a significant environmental impact. To enhance the environmental sustainability of ECC, it is plausible to substitute a large portion of cement in the composition with fly ash, a by-product of coal-fired power plants. In recent years, there has been increased research in ECC containing high-volume fly ash (HVFA) binders and its wider application in construction practices. In this particular context, it becomes imperative to review the role of the HVFA binder in ECC. This review first examines the effects of incorporating an HVFA binder in ECC on fiber dispersion and fiber/matrix interface behavior. Additionally, mechanical properties, including the compressive strength, tensile behavior, and cracking behavior under loading, as well as durability performances of HVFA-based ECC under various exposure conditions, are explored. At last, the review summarizes the research needs pertaining to HVFA-based ECC, providing valuable guidance for future endeavors in this field.
10.14359/51746805
24-168
Zhiyong Liu, Jinyang Jiang, Yang Li, Yuncheng Wang, Xi Jin, and Zeyu Lu
A capsule phase change material (CPCM) was synthesized using n-tetradecane as the core, expanded graphite as the shell, and ethyl cellulose as the coating material through a controlled assembly process. The results demonstrate that the infiltration of n-tetradecane significantly enhances the density of the expanded graphite, while the ethyl cellulose coating effectively prevents the desorption and leakage of the liquid phase change material during phase transitions. As a result, the CPCM exhibits a compact structure, chemical stability, and excellent thermal stability. The incorporation of this CPCM into cement-based materials endows the material with an autonomous heat-release capability at temperatures below 5°C. When the CPCM content reaches 20%, the thermal conductivity of the cementitious matrix increases by 24.66%. Moreover, the CPCM significantly improves the freeze-thaw resistance of the cement-based materials, reducing the compressive strength loss by 96% and the flexural strength loss by 65% after freeze-thaw cycles. This CPCM fundamentally enhances the frost resistance of cement-based materials, addressing the issue of freeze-thaw damage in concrete structures in cold regions.
10.14359/51746807
24-365
Mohd Hanifa, Usha Sharma, P.C. Thapliyal, and L.P. Singh
The production of carbonated aggregates from Class F fly ash (FA) is challenging due to its low calcium content, typically less than 10%. This study investigates the production of carbonated alkali-activated aggregates using FA and calcium carbide sludge (CCS). Sodium hydroxide was used as an activator and examined the effects of autoclave treatment on the properties of these aggregates. The optimal mixture, comprising 70% FA and 30% CCS, achieved a single aggregate strength of >5 MPa in autoclave carbonated (AC) aggregates, comparable to the strength obtained after 14 days of water curing in without autoclave carbonated (WAC) aggregates. Both AC and WAC aggregates exhibited a bulk density of 790 to 805 kg/m3 and CO2 uptake of 12.5% and 13.3% in AC and WAC aggregates, respectively. FE-SEM and FT-IR analysis indicated the formation C-A-S-H gel in noncarbonated aggregates, while calcite and vaterite, along with N-A-S-H gel, formed in carbonated aggregate. Concrete incorporating AC and WAC aggregates exhibit compressive strengths of 39 and 38 MPa, with concrete density of 2065 kg/m3 and 2085 kg/m3, respectively. Furthermore, AC and WAC aggregate concrete showed a reduction in CO2 emission of 18% and 31%, respectively, compared to autoclave noncarbonate (ANC) aggregate concrete. These findings highlight the potential of producing carbonated alkali-activated aggregates from FA and CCS as sustainable materials for construction applications.
10.14359/51746810
24-374
Norsuzailina Mohamed Sutan, Faisal Amsyar, Abdul Razak Abdul Karim, Norazzlina M.Sa’don, Yoeng Sebastian Shun Hui, and Chin Cerries Yee Jie
Engineered cementitious composites (ECC) represent a significant innovation in construction materials due to their exceptional flexibility, tensile strength, and durability, surpassing traditional concrete. This review systematically examines the composition, mechanical behaviour, and real-world applications of ECC, with a focus on how fiber reinforcement, mineral additives, and micromechanical design improve its structural performance. The present study reports on the effects of various factors, including different types of mineral admixtures, aggregate sizes, fiber hybridization, and specimen dimensions. Key topics include ECC’s strain-hardening properties, its sustainability, and its capacity to resist crack development, making it ideal for high-performance infrastructure projects. Additionally, the review discusses recent advancements in ECC technology, such as hybrid fibre reinforcement and the material’s growing use in seismic structures. The paper also addresses the primary obstacles, including high initial costs and the absence of standardized specifications, while proposing future research paths aimed at optimizing ECC’s efficiency and economic viability.
10.14359/51746811
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Edit Module Settings to define Page Content Reviewer