ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 405 Abstracts search results

Document: 

SP-349_15

Date: 

April 22, 2021

Author(s):

Jamal Medljy, Hilal El-Hassan, and Tamer El-Maaddawy

Publication:

Symposium Papers

Volume:

349

Abstract:

This paper focuses on developing ambient-cured alkali-activated concrete incorporating recycled concrete aggregates (RA). The binder was either slag or a blend of slag and fly ash (3:1, by mass). Hook-ended steel fibers were added, in 2% volumetric fraction, to improve the properties of concrete made with RA. The alkaline activator solution was a blend of sodium silicate and sodium hydroxide. Concrete mixtures were proportioned to achieve three target compressive strengths, namely 30, 45, and 60 MPa. The performance of concrete mixtures was assessed based on 1, 7, and 28-day compressive strengths. Experimental results showed that full replacement of natural aggregates by RA caused up to 28% reduction in compressive strength of plain alkali-activated slag concretes, with greater reductions being reported in mixtures with higher target strength and tested at 28 days. The incorporation of 2% steel fibers enhanced the strength and caused limited strength reductions of up to 7%. Compared to alkali-activated slag RA concretes, mixtures with 25% fly ash replacement exhibited lower strengths at 1 and 7 days, but their 28-day strength was superior. Analytical multi-linear regression models were developed to identify statistical significance of concrete components and examine their impact on the compressive strength.


Document: 

SP-347_05

Date: 

March 1, 2021

Author(s):

Serhan Guner, Trevor D. Hrynyk, and Andac Lulec

Publication:

Symposium Papers

Volume:

347

Abstract:

Current computational modeling approaches used to evaluate the impact-resisting performance of reinforced concrete infrastructure generally consist of high-fidelity modeling techniques which are expensive in terms of both model preparation and computation cost; thus, their application to real-word structural engineering problems remains limited. Further, modeling shear, erosion, and perforation effects presents as a significant challenge, even when using expensive high-fidelity computational techniques. To address these challenges, a simplified nonlinear modeling methodology has been developed. This paper focuses on this simplified methodology which employs a smeared-crack continuum material model based on the constitutive formulations of the Disturbed Stress Field Model. The smeared-crack model has the benefit of simplifying the modeling process and reducing the computational cost. The total-load, secant-stiffness formulation provides well-converging and numerically stable solutions even in the heavily damaged stages of the responses. The methodology uses an explicit time-step integration method and incorporates the effects of high strain rates in the behavioral modeling of the constituent materials. Structural damping is primarily incorporated by way of nonlinear concrete and reinforcement hysteresis models and significant secondorder mechanisms are considered. The objective of this paper is to present a consistent reinforced concrete modeling methodology within the context of four structural modeling procedures employing different element types (e.g., 2D frames, 3D thick-shells, 3D solids, and 2D axisymmetric elements). The theoretical approach common to all procedures and unique aspects and capabilities of each procedure are discussed. The application and verification of each procedure for modeling different types of large-scale specimens, subjected to multiple impacts with contact velocities ranging from 8 m/s (26.2 ft/s) to 144 m/s (472 ft/s), and impacting masses ranging from 35 kg (77.2 lb) to 600 kg (1323 lb), are presented to examine their accuracy, reliability, and practicality.


Document: 

SP-348_07

Date: 

March 1, 2021

Author(s):

Pericles C. Stivaros and Pablo A. Bruno

Publication:

Symposium Papers

Volume:

348

Abstract:

This paper presents a case study involving the structural analysis and design of an elevated foundation plinth to support multiple pieces of rotating machines with different operating weights and speeds. The equipment is used to operate a high-speed balancing testing facility for turbines and rotors that are located within an adjacent testing chamber. This project comprised of several layout and design challenges, including vibration and resonance concerns, effects of multiple operating frequencies, plinth shape, and pile foundation effects. Major concern was to maintain the high precision and strict tolerance limitations required by the high-speed balancing operations. Elevated machine foundations integral with other structures possess many natural frequencies, both locally and globally. The traditional design rules-of-thumb are not adequate for analyzing and designing elevated machine foundations. A computer-based finite element analysis method is required to identify the multiple natural frequencies of a complicated foundation structure. The strength design of a machine foundation can become very challenging when trying to implement code requirements that are mostly applicable to building elements and not to massive concrete foundations. This study recognizes the need for the development of a design standard to include special design requirements for mass concrete machine foundations.


Document: 

SP-347_14

Date: 

March 1, 2021

Author(s):

Seong Ryong Ahn and Thomas H.-K. Kang

Publication:

Symposium Papers

Volume:

347

Abstract:

Impact resistance of concrete panels has been researched since the 19th century. Studies therein primarily focused on conventionally reinforced concrete and steel fiber-reinforced concrete. Little research on the impact resistance of prestressed concrete exists. This paper investigated the impact resistance of prestressed concrete panels subject to hard and soft/hollow projectiles and under an assortment of prestressing levels. Damage mode, velocity change, impact force, and internal energy were measured and analyzed. A total of twelve finite element analyses, which considered high strain rate effects, were performed, as well as preliminary analyses with different mesh sizes. It is observed that level of prestressing tends to improve perforation resistance of concrete panels. Additionally, large deformation at soft projectiles occurred during impact, consuming the greater internal energy of the projectiles, unlike hard projectiles. As a result, soft projectiles caused a smaller degree of local failure on the concrete panels than hard projectiles with the same mass and velocity.


Document: 

SP343

Date: 

November 3, 2020

Author(s):

fib and ACI

Publication:

Symposium Papers

Volume:

343

Abstract:

The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally. June 2018 Bruno Massicotte, Fausto Minelli, Barzin Mobasher, Giovanni Plizzari


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.