ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 255 Abstracts search results

Document: 

SP-360_07

Date: 

March 1, 2024

Author(s):

Jaeha Lee, Kivanc Artun, Charles E. Bakis, Maria M. Lopez and Thomas E. Boothby

Publication:

Symposium Papers

Volume:

360

Abstract:

Small-scale plain concrete precracked beams strengthened with glass fiber reinforced polymer (GFRP) sheets underwent testing in 3-point flexure to assess variations in the FRP-concrete Mode II interfacial fracture energy after 6 and 13 years of sustained loading in indoor and outdoor environments. The Mode II fracture energy of the interfacial region, GF, was determined by analyzing strain profiles along the length of the FRP sheet, which were obtained using digital image correlation and photoelastic techniques. In the experiments conducted after conditioning, higher GF values were observed as the debonded zone progressed from the region of sustained shear stress transfer to the unstressed section of the interfacial region, particularly in beams subjected to outdoor conditioning. In the interfacial region near the notch, GFRP beams showed reductions in GF in both indoor and outdoor environments. For outdoor beams with GFRP sheets, there was no additional degradation in GF when the FRP was exposed to direct sunlight, in comparison to beams with the FRP exposed to indirect sunlight.

DOI:

10.14359/51740619


Document: 

SP-360_03

Date: 

March 1, 2024

Author(s):

Abubakar S. Ishaq, Maria M. Lopez, Charles E. Bakis, and Yoseok Jeong

Publication:

Symposium Papers

Volume:

360

Abstract:

This study evaluates the bond performance of concrete epoxy bonds using an image segmentation-based image processing technique. The Concrete Epoxy Interface (CEI) plays a crucial role in the structural performance of FRP-repaired concrete as it transfers stresses from the concrete to the epoxy. By employing the image segmentation technique, the performance of the CEI is assessed through the ratio of Interfacial Failure (IF) to other failure types, namely cohesive failure in Epoxy (CE) and Cohesive cracks in Concrete (CC). The effects of sustained loading duration on CEI bond performance are quantitatively analyzed using 21 single-lap shear (SLS) specimens and 28 notched 3-Point Bending (3PB) specimens. The findings highlight vital conclusions: CE is the least failure mode in SLS and 3PB specimens. In contrast, CC is the predominant failure mode, indicating the susceptibility of the concrete substrate in FRP-repaired concrete. Moreover, IF generally increases with longer sustained loading durations in 3PB specimens but decreases with increased loading duration in SLS specimens. The study also demonstrates the effectiveness of the image segmentation approach in evaluating CEI performance in 3PB specimens, where color distinguishes epoxy, FRP, and concrete substrate.

DOI:

10.14359/51740615


Document: 

SP-360_10

Date: 

March 1, 2024

Author(s):

Sara Mirzabagheri, Andrew Kevin Kenneth Doyle, Amir Mofidi, Omar Chaallal

Publication:

Symposium Papers

Volume:

360

Abstract:

Embedded Through-Section (ETS) method is a shear rehabilitation technique for concrete structures involving pre-drilling vertical holes into a reinforced concrete member and installing FRP bars to be bonded using epoxy adhesive. Due to the lack of reliable models for predicting the ETS FRP bond behaviour, developing an accurate model to predict the maximum pull-out force of the ETS technique was deemed a knowledge gap. In this study, the main parameters used in an analytical bond-slip model proposed by the authors were obtained empirically and evaluated against the existing experimental results in the literature. To be able to calculate the maximum pull-out force for ETS FRP bars with different materials, a fracture mechanics-based bond model was defined in terms of the joints' geometrical and material properties, to allow the model to predict the performance of any FRP type with any concrete compressive strength. By using data in the available literature on FRP ETS pull-out tests, statistical analysis was utilized to fit the parameters against experimental data. The proposed model was able to produce superior analytical predictions of the experimental test data when compared to the existing bond models for ETS FRP bars.

DOI:

10.14359/51740622


Document: 

SP-351_09

Date: 

April 1, 2022

Author(s):

Yang Li and Hassan Aoude

Publication:

Symposium Papers

Volume:

351

Abstract:

Ultra-high performance concrete (UHPC) is a novel material which shows impressive properties including high strength, increased toughness and excellent durability. One of the potential applications of UHPC is in heavily-loaded beams and bridge girders where their use can allow for more efficient design sections and increased durability. On the other hand, the high bond capacity of UHPC can eventually lead to brittle bar fracture failures in flexural members, especially when combined with low or moderate amounts of ordinary steel reinforcement (ρ ≤ 1%). This paper examines the influence of reinforcement grade on the flexural behaviour of UHPC beams. As part of the study, a series of UHPC beams built with either Grade 400 MPa ordinary steel reinforcement, Grade 690 MPa high-strength reinforcement or Grade 520 MPa stainless steel reinforcement are tested under four-point bending. The main parameters investigated include the influence of UHPC, steel type and tension steel ratio. Overall the results show that the ductility of the UHPC beams is influenced by both the tension steel ratio and steel grade/type. The results also show the benefits of combining UHPC with higher grade or higher ductility steel reinforcement.

DOI:

10.14359/51734679


Document: 

SP-347_01

Date: 

March 1, 2021

Author(s):

Iurie Curosu, Viktor Mechtcherine, Daniele Forni, Simone Hempel and Ezio Cadoni

Publication:

Symposium Papers

Volume:

347

Abstract:

Synopsis: Strain-hardening cement-based composites (SHCC) represent a special type of fiber reinforced concretes, whose post-elastic tensile behavior is characterized by the formation of multiple, fine cracks under increasing loading up to failure localization. The high inelastic deformability in the strain-hardening phase together with the high damage tolerance and energy dissipation capacity make SHCC promising for applications involving dynamic loading scenarios, such as earthquake, impact or blast.

However, the main constitutive phases of SHCC, i.e. matrix, fibers and interphase between them, are highly rate sensitive. Depending on the SHCC composition, the increase in loading rates can negatively alter the balanced micromechanical interactions, leading to a pronounced reduction in strain capacity. Thus, there is need for a detailed investigation of the strain rate sensitivity of SHCC at different levels of observation for enabling a targeted material design with respect to high loading rates.

The crack opening behavior is an essential material parameter for SHCC, since it defines to a large extent the tensile properties of the composite. In the paper at hand, the rate effects on the crack opening and fracture behavior of SHCC are analyzed based on quasi-static and impact tensile tests on notched specimens made of three different types of SHCC. Two SHCC consisted of a normal-strength cementitious matrix and were reinforced with polyvinyl-alcohol (PVA) and ultra-high molecular weight polyethylene (UHMWPE) fibers, respectively. The third type consisted of a high-strength cementitious matrix and UHMWPE fibers. The dynamic tests were performed in a split Hopkinson tension bar and enabled an accurate description of the crack opening behavior in terms of force-displacement relationships at displacement rates of up to 6 m/s (19.7 ft/s).

DOI:

10.14359/51732655


12345...>>

Results Per Page