ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 192 Abstracts search results

Document: 

SP343

Date: 

November 3, 2020

Author(s):

fib and ACI

Publication:

Symposium Papers

Volume:

343

Abstract:

The first international FRC workshop supported by RILEM and ACI was held in Bergamo (Italy) in 2004. At that time, a lack of specific building codes and standards was identified as the main inhibitor to the application of this technology in engineering practice. The workshop aim was placed on the identification of applications, guidelines, and research needs in order for this advanced technology to be transferred to professional practice. The second international FRC workshop, held in Montreal (Canada) in 2014, was the first ACI-fib joint technical event. Many of the objectives identified in 2004 had been achieved by various groups of researchers who shared a common interest in extending the application of FRC materials into the realm of structural engineering and design. The aim of the workshop was to provide the State-of-the-Art on the recent progress that had been made in term of specifications and actual applications for buildings, underground structures, and bridge projects worldwide. The rapid development of codes, the introduction of new materials and the growing interest of the construction industry suggested presenting this forum at closer intervals. In this context, the third international FRC workshop was held in Desenzano (Italy), four years after Montreal. In this first ACI-fib-RILEM joint technical event, the maturity gained through the recent technological developments and large-scale applications were used to show the acceptability of the concrete design using various fibre compositions. The growing interests of civil infrastructure owners in ultra-high-performance fibre-reinforced concrete (UHPFRC) and synthetic fibres in structural applications bring new challenges in terms of concrete technology and design recommendations. In such a short period of time, we have witnessed the proliferation of the use of fibres as structural reinforcement in various applications such as industrial floors, elevated slabs, precast tunnel lining sections, foundations, as well as bridge decks. We are now moving towards addressing many durability-based design requirements by the use of fibres, as well as the general serviceability-based design. However, the possibility of having a residual tensile strength after cracking of the concrete matrix requires a new conceptual approach for a proper design of FRC structural elements. With such a perspective in mind, the aim of FRC2018 workshop was to provide the State-of-the-Art on the recent progress in terms of specifications development, actual applications, and to expose users and researchers to the challenges in the design and construction of a wide variety of structural applications. Considering that at the time of the first workshop, in 2004, no structural codes were available on FRC, we have to recognize the enormous work done by researchers all over the world, who have presented at many FRC events, and convinced code bodies to include FRC among the reliable alternatives for structural applications. This will allow engineers to increasingly utilize FRC with confidence for designing safe and durable structures. Many presentations also clearly showed that FRC is a promising material for efficient rehabilitation of existing infrastructure in a broad spectrum of repair applications. These cases range from sustained gravity loads to harsh environmental conditions and seismic applications, which are some of the broadest ranges of applications in Civil Engineering. The workshop was attended by researchers, designers, owner and government representatives as well as participants from the construction and fibre industries. The presence of people with different expertise provided a unique opportunity to share knowledge and promote collaborative efforts. These interactions are essential for the common goal of making better and sustainable constructions in the near future. The workshop was attended by about 150 participants coming from 30 countries. Researchers from all the continents participated in the workshop, including 24 Ph.D. students, who brought their enthusiasm in FRC structural applications. For this reason, the workshop Co-chairs sincerely thank all the enterprises that sponsored this event. They also extend their appreciation for the support provided by the industry over the last 30 years which allowed research centers to study FRC materials and their properties, and develop applications to making its use more routine and accepted throughout the world. Their important contribution has been essential for moving the knowledge base forward. Finally, we appreciate the enormous support received from all three sponsoring organizations of ACI, fib and Rilem and look forward to paving the path for future collaborations in various areas of common interest so that the developmental work and implementation of new specifications and design procedures can be expedited internationally. June 2018 Bruno Massicotte, Fausto Minelli, Barzin Mobasher, Giovanni Plizzari


Document: 

SP338

Date: 

April 27, 2020

Author(s):

Bruce A. Suprenant and Oscar R. Antommattei

Publication:

Symposium Papers

Volume:

338

Abstract:

Ward R. Malisch spent most of his 50-year career addressing issues related to concrete construction, specifically to problems that concrete contractors deal with daily. His civil engineering training began at the University of Illinois at Urbana-Champaign where he received his BS, MS, and PhD in 1961, 1963, and 1966, respectively. During his time at Illinois he also carried out research on concrete durability and taught courses on plain concrete. Following that, he taught courses in concrete construction at the University of Missouri-Rolla (now Missouri University of Science and Technology) where he received several awards for outstanding teaching. During his time there he took a leave of absence to work in quality control for the prime contractor building Missouri’s first nuclear power plant. This experience spurred his interest in how specification requirements and tolerances affected contractors’ abilities to build both simple and complex structures. Malisch was able to reach the construction industry more directly when he joined the staff of the World of Concrete seminar program and later became editor of Concrete Construction magazine. He was then able to teach at a national level by further developing a seminar program and editorial content that featured how-to-do-it information on concrete technology, with an emphasis on contractor-related topics. During his tenure with the magazine, he began answering questions on a telephone hotline service offered by the American Society of Concrete Contractors (ASCC), and gave advice on problems related to unrealistic concrete tolerances, inadequate knowledge about plastic concrete properties, ambiguous specifications, and a wide range of other construction-related topics. In subsequent years, Malisch served as director of engineering and later as senior managing director at the American Concrete Institute. There, while supervising the engineering, marketing, and education departments, and serving as publisher of Concrete International magazine, he also interacted with other concrete-related organizations, serving on the Research, Engineering, and Standards Committee of the National Ready Mixed Concrete Association and on the ASCC Board of Directors. Along with the ACI Strategic Development Council, ASCC, and Construction Technology Laboratories, he helped to organize an Inter-Industry Working Group on Concrete Floor Issues that brought together leaders from several construction and flooring industry groups. One outcome of this group’s activity was publication of ACI 302.2R-06, “Guide for Concrete Slabs that Receive Moisture-Sensitive Flooring Materials.” Upon retirement from ACI in 2008, he was named technical director of ASCC. He was active again in forming an Inter-Industry Working Group on Reducing the Cost of Tolerance Compatibility Problems along with eight other co-sponsoring groups. He later served as principal investigator on two construction related research projects dealing with contractor-related problems. Dr. Malisch’s awards include: • 1986— Elected Fellow of the American Concrete Institute • 2004— Arthur Y. Moy Award, ACI Greater Michigan Chapter • 2006— Silver Hard Hat Award, highest award given by the Construction Writers Association • 2008— Richard D. Gaynor Award, Highest technical award given by the National Ready-Mixed Concrete Association • 2009—One of Concrete Construction magazine’s Most Influential People • 2010— Arthur R. Anderson Medal, ACI, given for outstanding contributions to the advancement of knowledge of concrete as a construction material • 2011— ACI Construction Award, given to the author of any paper of outstanding merit on concrete construction practice • 2011— ASCC Lifetime Achievement Award, ASCC’s highest honor, acknowledging recipients for their body of work within the industry and their service to ASCC • 2013— ACI Honorary member, given to a person of eminence in the field of the Institute’s interest or one who has performed extraordinary meritorious service to the Institute • 2019—Roger H. Corbetta Concrete Construction Award, ACI, given to an individual that has made significant contributions to progress in methods of concrete construction. For his dedication to the concrete construction industry, this Special Publication is a tribute to his work and is sponsored by the ACI Construction Liaison Committee. Sixteen presentations, distributed in four sessions named “Ward R. Malisch Concrete Construction Symposium,” were given at the 2017 ACI Fall Convention in Anaheim, CA. The quality of the presentations was highlighted by the participation of four former presidents of ACI: David Darwin, Terry Holland, Ken Hover and Mike Schneider. The nine manuscripts presented in this Special Publication are significant in that each paper represents authors that have been previously published in ACI. Thanks are extended to the many ACI members who reviewed the manuscripts and provided helpful technical and editorial comments which enhanced the authors’ papers. This Special Publication is but one small token of appreciation and gratitude to the more than 50-year service of Ward R. Malisch to concrete construction. He has been a source of inspiration to many as well as an example of honesty, integrity, and dedication. He has built the foundation for others to build upon in serving the concrete construction industry.


Document: 

SP-339_04

Date: 

March 1, 2020

Author(s):

Mark Sarkisian, Eric Long, and David Shook

Publication:

Symposium Papers

Volume:

339

Abstract:

Performance based seismic design (PBSD) has created new opportunities for enhanced performance, improved cost efficiencies, and increased reliability of tall buildings. More specifically, flexibility with initial design methods and the utilization of response history results for design, not just verification, have emerged. This paper explores four refined design methods made available by the employment PBSD to influence seismic performance and identify areas of importance. First is the initial proportioning of reinforcement to encourage plastic hinge behavior at specific locations. Second is the initial proportioning of wall thicknesses and reinforcements to encourage a capacity-based design approach for force-controlled actions. Third is the mapping of observed strain demands in shear walls to specific detailing types such as ordinary and special boundary zones. Fourth is an efficient envelope method for the design of foundations. Through these design methods, initial proportioning can be conducted in a more refined way and targeted detailing can result in cost savings. A case study of a recently designed high-rise residential building demonstrates that cost savings can be achieved with these methods.


Document: 

SP-339_08

Date: 

March 1, 2020

Author(s):

Kevin Aswegan and Ian McFarlane

Publication:

Symposium Papers

Volume:

339

Abstract:

The use of a Performance-Based Seismic Design (PBSD) approach to design buildings whose heights exceed 240 ft (73 m) has become common in many West Coast cities. This paper studies trends across 14 special reinforced concrete shear wall PBSD towers designed within the last 5 years. The primary purpose of evaluating these trends is to compare demands calculated using a linear elastic design approach (i.e. for Design Earthquake or Service Level shaking) to the demands (average results from 7 or 11 ground motions) determined through nonlinear analysis (i.e. for Maximum Considered Earthquake shaking). The specific demands evaluated include core wall shears and foundation overturning moments. The paper also demonstrates that shear and moment amplification are significant phenomena for concrete buildings, and are believed to be primarily due to nonlinear behavior, material over-strength, higher mode effects, and damping and stiffness assumptions. The results present a useful range of trends to provide an engineer guidance on the expected demands and the level of variability between projects. The paper highlights some of the reasons for the variability in these trends, and provides general proportioning recommendations.


Document: 

SP-339_03

Date: 

March 1, 2020

Author(s):

Devin Daniel and Ian McFarlane

Publication:

Symposium Papers

Volume:

339

Abstract:

The use of a Performance-Based Seismic Design (PBSD) approach to design buildings that exceed 240-feet (73.2 m) tall has been common among many west coast cities. More recently, Oakland, California has been an epicenter of development that has created a market for taller buildings. The residential tower at 1640 Broadway, which is currently under construction, is the first tower designed using PBSD exceeding 240-feet (73.2 m) tall in Oakland. This is notable in terms of establishing the implementation of PBSD in a new jurisdiction. This is also notable because of the near fault location of Oakland, given that the Hayward fault is less than 3.1 miles (5 km) from the downtown region, which raises new issues such as fault normal/fault parallel ground motion scaling issues and designing for extremely high demand levels. Due to these extreme demand levels, the project consisted of high reinforcement ratios within the walls and embedded steel coupling beams. Finally, the foundation conditions were challenged by the proximity to BART tunnels and therefore consist of a hybrid mat foundation supported on deep soil mixed panels and cased steel piles. A summary of the unique aspects of the building are presented and compared with typical code compliant and PBSD towers.


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.