ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 245 Abstracts search results

Document: 

SP342

Date: 

July 17, 2020

Publication:

Symposium Papers

Volume:

342

Abstract:

Sponsors: Sponsored by ACI Committees 342, Evaluation of Concrete and 343, Concrete Bridge Design (Joint ACI-ASCE) Editors: Benjamin Z. Dymond and Bruno Massicotte In recent years, both researchers and practicing engineers worldwide have been refining state-of-the-art and emerging technologies for the strength evaluation and design of concrete bridges using advanced computational analysis and load testing methods. Papers discussing the implementation of the following topics were considered for inclusion in this Special Publication: advanced nonlinear modeling and nonlinear finite element analysis (NLFEA), structural versus element rating, determination of structure specific reliability indices, load testing beyond the service level, load testing to failure, and use of continuous monitoring for detecting anomalies. To exchange international experiences among a global group of researchers, ACI Committees 342 and 343 organized two sessions entitled “Advanced Analysis and Testing Methods for Concrete Bridge Evaluation and Design” at the Spring 2019 ACI Convention in Québec City, Québec, Canada. This Special Publication contains the technical papers from experts who presented their work at these sessions. The first session was focused on field and laboratory testing and the second session was focused on analytical work and nonlinear finite element modeling. The technical papers in this Special Publication are organized in the order in which they were presented at the ACI Convention. Overall, in this Special Publication, authors from different backgrounds and geographical locations share their experiences and perspectives on the strength evaluation and design of concrete bridges using advanced computational analysis and load testing methods. Contributions were made from different regions of the world, including Canada, Italy, and the United States, and the technical papers were authored by experts at universities, government agencies, and private companies. The technical papers considered both advanced computational analysis and load testing methods for the strength evaluation and design of concrete bridges.


Document: 

SP-341-11

Date: 

June 30, 2020

Author(s):

Ahmed Ibrahim, Sabreena Nasrin, and Riyadh Hindi

Publication:

Symposium Papers

Volume:

341

Abstract:

The spiral reinforcement is a special detailing technique used for reinforcing columns in regions of high seismic activities because of its ability in energy absorption and ductility. In this paper, the results of the experimental testing on cross spiral confinement in reinforced concrete columns are presented. The experimental results were verified by nonlinear finite element analysis as well as an analytical model. The developed analytical model was based on the octahedral stress criterion and compared with other models available in the literature. In the Finite element model, the concrete damage plasticity and steel yielding criterion were used in the constitutive equations. The finite element showed very good prediction of the ultimate load and failure strain for various spiral reinforcement ratios. Analytical stress-strain models have been developed and compared to the experiment results in the literature and found work well in predicting the columns behavior under monotonic axial loads. The authors see that the proposed technique is a very good potential of industry implementation and provides a more seismic resiliency to structures.

Such detailing technique could be used as a mitigation system for columns in high seismic zones.


Document: 

SP-341-09

Date: 

June 30, 2020

Author(s):

Arya Ebrahimpour and Barbara Earles

Publication:

Symposium Papers

Volume:

341

Abstract:

Accelerated Bridge Construction (ABC) technologies are being adopted by state transportation departments. One particular ABC technology is the use of precast concrete members joined with mechanical connectors. However, there are concerns about these connections in moderate-to-high seismic regions. A study was carried out for the Idaho Transportation Department (ITD) on the seismic performance of precast columns with grouted couplers versus the conventional cast-in-place columns. Experimental data provided the necessary input to model the grouted couplers. Using the OpenSees finite element analysis program, selected bridges were subjected to the seismic conditions of the most seismically active location in Idaho. Under seismic conditions considered, the stresses in both the longitudinal reinforcing bars and the grouted coupler regions are found to be well within acceptable ranges. The study resulted in recommendations on allowable column drifts, a list of approved grouted rebar couplers, and typical detail drawings for inclusion in the ITD’s Bridge Manual.


Document: 

SP-342_11

Date: 

June 1, 2020

Author(s):

Yang Yang and Ruili He

Publication:

Symposium Papers

Volume:

342

Abstract:

Concrete columns in curved bridges have reportedly showed high interaction between bending and torsional moments when subjected to design-level earthquake loading. In order to accurately evaluate the performance of curved bridges under earthquake loadings, it is necessary to incorporate the interaction behavior into computational models. However, very limited work has been reported in the literature, which includes finite element models involving threedimensional solid elements and user-developed fiber elements in open-source computing tools; the former involves significant computational effort when multiple levels of earthquake records need to be considered, while the latter is not widely available in analysis tools like OpenSees. This study developed a modeling technique to simulate the interaction between bending and torsional moments in bridge columns through the discretization of the column into longitudinal, transverse, and diagonal elements. In this study, the developed modeling technique was validated against experimental data from a previous study, and case studies on typical curved bridges were presented to show its efficiency in seismic simulation.


Document: 

SP-342_10

Date: 

June 1, 2020

Author(s):

Anish Sharma and Serhan Guner

Publication:

Symposium Papers

Volume:

342

Abstract:

Due to the increase in traffic and transported freight in the past decades, a significant number of in-service bridges have been subjected to loads above their original design capacities. Bridge structures typically incorporate deep concrete elements, such as cap beams or bent caps, with higher shear strengths than slender elements. However, many in-service bridges did not account for the deep beam effects in their original design due to the lack of suitable analysis methods at that time. Nonlinear finite element analysis (NLFEA) can provide a better assessment of the load capacity of deep bridge bent beams while accounting for the deep beam action. However, there is little guidance on how to conduct a numerical strength evaluation using the NLFEA. This study presents a nonlinear modeling methodology for the strength evaluation of deep bridge bents while considering advanced concrete behavior such as tension stiffening, compression softening, and dowel action. Five existing bridge bent beams are examined using the proposed methodology. The effectiveness and advantages of the proposed methodology are discussed by comparing the numerical results, including the load-displacement responses, load capacities, cracking patterns and failure modes, with the strut-and-tie and sectional analysis methods. Important modeling considerations are also discussed to assist practitioners in accurately evaluating deep bridge bents.


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.