ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 1065 Abstracts search results

Document: 

SP-363-8

Date: 

July 1, 2024

Author(s):

Ali Alatify and Yail J. Kim

Publication:

Symposium Papers

Volume:

363

Abstract:

This paper presents the prediction of bond strength between ultra-high performance concrete (UHPC) and fiber reinforced polymer (FRP) reinforcing bars using an artificial neuronal network (ANN) approach. A large amount of datasets, consisting of 183 test specimens, are collected from literature and an ANN model is trained and validated. The ANN model includes six variable inputs (bar diameter, concrete cover, embedment length, fiber content, concrete strength, and rebar strength) and one output parameter (bond strength). The model performs better than other models excerpted from existing design guidelines and previously published papers. Follow-up studies are expected to examine the individual effects of the predefined input parameters on the bond strength of UHPC interfaced with FRP rebars.


Document: 

SP-363-3

Date: 

July 1, 2024

Author(s):

Megan S. Voss, Daniel Alabi, Raid S. Alrashidi, Taylor A. Rawlinson, Christopher C. Ferraro, H. R. Hamilton, Joel B. Harley, and Kyle A. Riding

Publication:

Symposium Papers

Volume:

363

Abstract:

The movement of ultra-high-performance concrete (UHPC) toward wide scale acceptance within the concrete industry has generated interest in developing improved test methods to provide quality assurance for this material. Most test methods currently used to measure the tensile behavior of ultra-high-performance concrete require specialized testing equipment that is not typically owned by precast or ready-mix production facilities. These test methods provide reliable data for quality assurance of newly developed concrete mixes, but they are impractical as quality-control tests, which would need to be performed for every UHPC placement. This paper presents the development of a simple and inexpensive test to measure tensile strength and ductility for UHPC and serve as a quality-control test. This method was developed from the double-punch test, commonly referred to as the “Barcelona test,” but has been revised to incorporate substantial changes to the loading and data collection requirements to eliminate the need for expensive, specialized equipment. It was determined that the modified test method could produce reliable results using a load-controlled testing procedure with manually recorded data points taken every 0.635 mm (0.025 inches) of vertical displacement for ductile concrete specimens. It was also determined that specimen surface grinding, loading rate, and punch alignment did not significantly influence the test results. However, the fabrication of the specimens, specifically the rate and method at which the molds were filled, had a significant effect on the results. Accordingly, any recommended standardized test method based off of this procedure should have requirements on specimen fabrication.


Document: 

SP-360_05

Date: 

March 1, 2024

Author(s):

Ahmed Kallel, Radhouane Masmoudi, Benoit Bissonnette and Marcelin Joanis

Publication:

Symposium Papers

Volume:

360

Abstract:

The durability of the bond between carbon fiber reinforced polymer (CFRP) and concrete surface under freeze-thaw (FT) cycles is a very significant issue in the application of external CFRP strengthening of reinforced concrete structures. This paper presents an experimental and analytical study on the bond behavior between CFRP and concrete under FT cycles. In this study, the samples were exposed to freeze-thaw cycles in accordance with ASTM C666 where the temperature range varies between -18 °C to +4 °C. Moreover, the bond properties between CFRP and concrete were experimentally evaluated through single lap shear tests and compared with the analytical prediction models proposed in the literature. The failure modes of the control samples as well as the samples exposed to freeze-thaw cycles were presented in this research. In addition, the load-slip behavior was discussed. A non-linear bond-slip relationship between the CFRP-concrete interface was presented at 0, 100, 200, and 300 of freeze-thaw cycles. The results show that the cohesive failure of concrete substrate was observed for the control samples. On the other hand, the mode of the interface failure was changed after exposure to freeze-thaw cycles. In addition, the bond strength of the CFRP-concrete interface increases with increasing freeze-thaw cycles.

DOI:

10.14359/51740617


Document: 

SP-360_01

Date: 

March 1, 2024

Author(s):

Junrui Zhang, Enrique del Rey Castillo, Ravi Kanitkar, Aniket D Borwankar, and Ramprasath R

Publication:

Symposium Papers

Volume:

360

Abstract:

A systematic literature review was conducted on pure tension strengthening of concrete structures using fiber-reinforced polymer (FRP), specifically for larger FRP tie applications. This work yielded a dataset of 1,627 direct tension tests, and highlighted the limitation of existing studies on studying thick and long FRP ties, which are typical in real construction scenarios. To overcome this shortcoming, 51 single lap shear tests were conducted on thicker and longer FRP ties, with the dimensions being 0.5 to 6 mm [0.02 to 0.24 in.] thickness, and 300 to 1,524 mm [12 to 60 in.] long. The critical parameters under consideration were concrete compressive strength, FRP thickness, and bond length. The findings demonstrate that thicker and therefore stiffer FRP ties have higher debond force capacity, while longer ties exhibit greater post-elastic deformation capacity but do not affect the debond force capacity. Concrete had a limited effect on either debond force or deformation capacity. A strength model is proposed for FRP systems under axial pure tension, which aligns well with both the published and tested results. This paper focuses on the development of design guidelines and codes to predict the debond strain for EB-FRP systems incorporating thicker and longer FRP ties, aiming to enhance the applicability of FRP to real-world construction scenarios.

DOI:

10.14359/51740613


Document: 

SP-360_48

Date: 

March 1, 2024

Author(s):

Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad

Publication:

Symposium Papers

Volume:

360

Abstract:

Mehdi Khorasani, Giovanni Muciaccia, and Davood Mostofinejad Synopsis: The externally bonded reinforcement on grooves (EBROG) technique has been recently shown to outperform its rival techniques of surface preparation (such as externally bonded reinforcement, EBR) employed to delay the undesirably premature debonding of fiber reinforced polymer (FRP) from the concrete substrate in retrofitted structure. However, the behavior of EBROG method under fatigue loading has not been assessed yet, and the present study is the first attempt to achieve the above aim. For this purpose, an experimental program is conducted in which 16 CFRP-to-concrete bonded joints on the concrete slab prepared through the EBROG and EBR techniques are subjected to the single lap-shear test and fatigue cyclic loading. Furthermore, the bond behavior of CFRP strips-to-concrete substrate is investigated in this research in terms of the load capacity, slip, debonding mechanism, and fatigue life. The results showed that the grooving method improved the bond properties of CFRP-to-concrete joints under fatigue loading. By using this alternative technique, the number of cycles until failure (fatigue life) increases incredibly under the same fatigue cycle loading and the service life of strengthened members could be improved under fatigue loading. Furthermore, the effects of different loading levels on the behavior of CFRP-concrete joints installed by EBROG method are evaluated. The results showed that fatigue life of strengthened specimens decreases by increasing fatigue upper load limit. Finally, a new predictive equation was developed based on plotting the maximum applied fatigue load versus fatigue life curves for CFRP-to-concrete bonded joints for the EBROG method.

DOI:

10.14359/51740660


12345...>>

Results Per Page