ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 345 Abstracts search results

Document: 

22-424

Date: 

April 1, 2024

Author(s):

C. Pleesudjai, D. Patel, K. A. Williams Gaona, M. Bakhshi, V. Nasri, and B. Mobasher

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Statistical process control (SPC) procedures are proposed to improve the production efficiency of precast concrete tunnel segments. Quality control test results of more than 1000 ASTM C1609/C1609M beam specimens were analyzed. These specimens were collected over 18 months from the fiber-reinforced concrete (FRC) used for the production of precast tunnel segments of a major wastewater tunnel project in the Northeast United States. The Anderson-Darling (AD) test for the overall distribution indicated that the data are best described by a normal distribution. The initial residual strength parameter for the FRC mixture, f D 600, is the most representative parameter of the post-crack region. The lower 95% confidence interval (CI) values for 28-day flexural strength parameters of f1, f D 600, and f D 300 exceeded the design strengths and hence validated the strength acceptability criteria set at 3.7 MPa (540 psi). A combination of run chart, exponentially weighted moving average (EWMA), and cumulative sum (CUSUM) control charts successfully identified the out-of-control mean values of flexural strengths. These methods identify the periods corresponding to incapable manufacturing processes that should be investigated to move the processes back into control. This approach successfully identified the capable or incapable processes. The study also included the Bootstrap Method to analyze standard error in the test data and its reliability to determine the sample size.

DOI:

10.14359/51740373


Document: 

22-286

Date: 

April 1, 2024

Author(s):

K. Sriram Kompella, Andrea Marcucci, Francesco Lo Monte, Marinella Levi, and Liberato Ferrara

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

The early-age material parameters of three-dimensional (3-D)-printable concrete defined under the umbrella of printability, namely, pumpability, extrudability, buildability, and the “printability window/open time,” are subjective measures. The need to correlate and successively substitute these subjective measures with objective and accepted material properties, such as tensile strength, shear strength, and compressive strength, is paramount. This study validates new testing methodologies to quantify the tensile and shear strengths of printable fiber-reinforced concretes still in their fresh state. A tailored mixture with high sulfoaluminate cement and nonstructural basalt fibers has been assumed as a reference. The relation between the previously mentioned parameters and rheological parameters, such as yield strength obtained through International Center for Aggregates Research (ICAR) rheometer tests, is also explored. Furthermore, in an attempt to pave the way and contribute toward a better understanding of the mechanical properties of 3-D-printed concrete, to be further transferred into design procedures, a comparative study analyzing the work of fracture per unit crack width in three-point bending has been performed on printed and companion nominally identical monolithically cast specimens, investigating the effects of printing directions, position in the printed circuit, and specimen slenderness (length to depth) ratio.

DOI:

10.14359/51740302


Document: 

21-335

Date: 

April 1, 2024

Author(s):

Zainab Hashim Abbas Alsalami and Fatima Hashim Abbas

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Ultra-high-performance concrete (UHPC) is considered a sophisticated concrete construction solution for infrastructure and other structures because of its premium mechanical traits and superior durability. Fibers have a special effect on the properties of UHPC, especially as this type of concrete suffers from high autogenous shrinkage due to its high cementitious content, so the properties and volume fraction of fibers are more important in UHPC. This study will describe previous related works on the mechanical behavior of UHPC specimens reinforced with micro- and nanoscale fibers, and compare of the behavior of UHPC reinforced with microfibers to that reinforced with nanofibers. The compressive strength, flexural behavior, and durability aspects of UHPC reinforced with nanoand/or microscale variable types of fibers were studied to highlight the issues and make a new direction for other authors.

DOI:

10.14359/51740369


Document: 

22-164

Date: 

April 1, 2024

Author(s):

Avinaya Tripathi, Sooraj A. O. Nair, Harshitsinh Chauhan, and Narayanan Neithalath

Publication:

Materials Journal

Volume:

121

Issue:

2

Abstract:

Conventional approaches to concrete three-dimensional (3-D) printing relies on printing concrete in a straight (linear) print path, with layers overlaid on top of each other. This results in interlayer and interfilament joints being potential weak spots that compromise the mechanical performance. This paper evaluates simple alterations to the print geometry to mitigate some of these effects. A printable mixture with 30% of limestone powder replacing cement (by mass), with a 28-day compressive strength of approximately 70 MPa in the strongest direction is used. S- and 3-shaped print paths are evaluated as alternatives to the linear print path. Staggering of the layers ensures that the interfilament joints do not lie on the same plane along the depth. Flexural strength enhancement is observed when print geometries are changed and/or layers are staggered. The study shows that print geometry modifications mitigate mechanical property reductions attributed to interfilament defects in 3-D concrete printing.

DOI:

10.14359/51740262


Document: 

23-101

Date: 

February 8, 2024

Author(s):

Le Teng, Alfred Addai-Nimoh, Kamal H. Khayat

Publication:

Materials Journal

Abstract:

This study evaluates the potential to use shrinkage-reducing admixture (SRA) and pre-saturated lightweight sand (LWS) to shorten the external moist curing requirement of ultra-high-performance concrete (UHPC), which is critical in some applications where continuous moist curing is challenging. Key characteristics of UHPC prepared with and without SRA and LWS and under 3 days, 7 days, and continuous moist curing were investigated. Results indicate that the combined incorporation of 1% SRA and 17% LWS can shorten the required moist curing duration since such mixture under 3 days of moist curing exhibited low total shrinkage of 360 µε at 56 days and compressive strength of 135 MPa (19,580 psi) at 56 days and flexural strength of 18 MPa (2,610 psi) at 28 days. This mixture subjected to 3 days of moist curing also had a similar hydration degree and 25% lower capillary porosity in paste compared to the Reference UHPC prepared without any SRA and LWS and under continuous moist curing. The incorporation of 17% LWS promoted cement hydration and silica fume pozzolanic reaction to a degree similar to extending the moist curing duration from 3 to 28 days and offsetting the impact of SRA on reducing cement hydration. The lower capillary porosity in the paste compensated for the porosity induced by porous LWS to secure an acceptable level of total porosity of UHPC.

DOI:

10.14359/51740566


12345...>>

Results Per Page