ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 346 Abstracts search results
Document:
CI4605Sicaras
Date:
May 1, 2024
Author(s):
Victoria K. Sicaras
Publication:
Concrete International
Volume:
46
Issue:
5
Abstract:
New research funded by the ACI Foundation developed and tested retrofit techniques for diaphragms using externally bonded fiber-reinforced polymer (FRP). Key findings from the research are being translated into guidance on how to establish the effective FRP design strain and the nominal shear strength contribution of the FRP. The recommendations also address the use of intermediate and end FRP anchors and limitations on the clear spacing between sheets
SP-360_09
March 1, 2024
Juan Torres Acosta and Douglas Tomlinson
Symposium Papers
360
Three bridge barriers were tested under pseudo-static loading to assess the effectiveness of a dowelling repair technique for restoring the capacity of damaged glass fiber-reinforced polymer (GFRP) reinforced systems. Barriers were 1500 mm (59.1 in.) wide and tested with an overhang of 1500 mm (59.1 in.). One barrier was entirely reinforced with steel reinforcement with the layout and geometry common in Alberta, Canada for highway applications. A second barrier replaced all steel reinforcement with GFRP bars. The third barrier simulates repair where the barrier is damaged and needs to be replaced by removing the barrier, drilling holes, and using epoxy to dowel GFRP bars into the deck. All barriers failed by concrete splitting at the barrier/deck interface which is attributed to the complex interaction of stresses from the barrier wall and overhang. The steel reinforced barrier was strongest but had slightly lower energy dissipation than the GFRP reinforced barriers. The repaired GFRP reinforced barrier had very similar response to the baseline GFRP reinforced barrier but reached a slightly larger capacity. Previously completed finite element models showed similar general responses and failure modes but larger stiffnesses and strengths than the tests which requires further investigation.
DOI:
10.14359/51740621
SP-360_38
Zhibin Li, Enrique del Rey Castillo, Richard S. Henry, Kent A. Harries, Tongyue Zhang
The application of fiber-reinforced polymer (FRP) jacketing for confinement may not always be feasible, particularly in cases where adjacent elements obstruct the structural member and prevent wrapping. To address this issue, the utilization of FRP laminate and spike anchors has been proven as an alternative solution. This study focuses on proposing a design methodology for this particular application. A stress-strain model was developed to assess the behavior of concrete prisms confined with FRP laminates and spike anchors under axial compression. The model adopts a bi-parabola stress-strain curve, with the coefficients derived from previously published experimental data on concrete prisms confined using this solution. The comparison between the analytical and tested stress-strain curves yielded a coefficient of determination (R2) averaging at 0.96, demonstrating the effectiveness of the bi-parabola model in describing the tested stress-strain responses.
10.14359/51740650
SP-360_40
Lin S-H, Kim I, Borwankar A, Kanitkar R, Hagen G, Shapack G
Fiber reinforced polymers (FRP) are commonly used to seismically retrofit concrete structural walls. Limited design guidance for the seismic application of FRP strengthening is currently available to designers in guidelines such as ACI PRC-440.2-17 or standards like ASCE/SEI 41-17. This paper presents the description and results of an experimental effort to investigate the effectiveness of FRP retrofitted concrete walls. The specimen wall thickness was either 6 in or 12 in, which represents a typical range of wall thickness seen in older buildings. To better reflect the most common applications seen in the industry, the walls were retrofitted with FRP, and anchored with fiber anchors only on one side of the wall. The study demonstrates that the effectiveness of FRP is reduced as the wall thickness increases and that the FRP must be anchored to the wall for any tangible benefit. The results are used to assess the current provisions in ACI PRC-440.2-17 and ASCE/SEI 41-17. It is apparent that additional testing is required to better understand the complexities involved in the FRP strengthening of shear walls and such testing is scheduled for the near future.
10.14359/51740652
SP-360_50
Haitham A. Ibrahim, Mohamed F. M. Fahmy, and Seyed Saman Khedmatgozar Dolati
This study numerically investigates the long-term effectiveness of using externally bonded fiber-reinforced polymer (FRP) plates as a strengthening technique for reinforced concrete (RC) beams. A two-dimensional finite element model (FEM) that can accurately predict the flexural behavior of FRP strengthened RC beams, is developed. Weathering exposure time of 0.0, 15.5, 35, and 75 years were considered. In total, 28 different concrete beams were modelled using the developed FEM. The results show that prolonged exposure to natural weathering can cause premature FRP debonding, even before reaching the yielding load. The ultimate load capacity, midspan deflection, and ductility of strengthened RC beams can be reduced by up to 38%, 62%, and 100%, respectively. In addition, the findings raised concerns about the applicability of the ACI 440.2R-17 provisions for calculating the design flexural strength of FRP strengthened RC beams with prolonged exposure to natural weathering. To ensure a safe design for strengthened beams with FRP debonding or concrete crushing failure modes, this paper recommends an additional reduction factor ranging from 0.8 to 0.9. Furthermore, periodic inspection using non-destructive testing and FRP anchorage system are highly recommended for both existing and new applications of FRP in structures.
10.14359/51740662
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer