ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 232 Abstracts search results

Document: 

SP-340-01

Date: 

April 1, 2020

Author(s):

John M. Kulicki and Gregg A. Freeby

Publication:

Symposium Papers

Volume:

340

Abstract:

Dr. Dennis Mertz was involved with the AASHTO LRFD Bridge Design Specifications [1] for 30 years. Starting with the original development of the specifications and continuing with maintenance and related course development and presentations. His last major contribution to the Specifications was to serve as Principal Investigator for the reorganization of Section 5, Concrete Structures. This presentation summarizes the changes to the structure of the Section including the increased emphasis on design of “B” and “D” regions of flexural members and introduces new and expanded material on beam ledges and inverted T-caps, shear and torsion, anchors, strut and tie modeling and durability. The product of this work was included in the 8th Edition of the Specifications as a complete replacement of Section 5.


Document: 

SP-339_10

Date: 

March 1, 2020

Author(s):

John S. Ma

Publication:

Symposium Papers

Volume:

339

Abstract:

The U.S. Nuclear Regulatory Commission (NRC) defines seismic Category 1 structures as the structures (buildings) that should be designed and built to withstand the maximum potential earthquake stresses for the particular region where a nuclear plant is sited. Seismic Category 1 structures have been designed for ground-shaking intensity associated with a safe-shutdown earthquake (SSE) – the intensity of the ground motion that will trigger the process of automatic shutdown of the reactor in operation. The SSE generates floor response spectra at different floor elevations in a building, and these spectra and their associated forces are used for the design of piping and piping anchors and equipment and equipment anchors at their floor locations. The NRC policy requires that the seismic Category 1 structures whose collapse could cause early or/and large release of radioactive materials into the atmosphere to be analyzed/designed for “no collapse” during the ground-shaking intensity of a review-level earthquake (RLE), which is 1.67 times that of an SSE. Most seismic Category 1 concrete structures, such as containment and shield buildings (curved cylindrical wall; see Figs. 1 and 2 in the next section) and containment internal structures (straight wall; see Fig. 1), use walls to resist earthquakes. This paper presents guidelines for the performance-based seismic design for these wall-typed structures that could meet the NRC policy. The method consists of (1) proportioning wall thickness based on shear stress of 6√fc’ (0.5√fc’ megapascals (MPa)) generated by SSE ground motions, (2) limiting vertical compressive stress in walls to less than 0.35 fc’, (3) providing minimum percentage of reinforcement of 1.0 percent to prevent steel reinforcing bar fracture, (4) subjecting the building design to nonlinear dynamic response analyses under RLE ground motions, (5) identifying any members and their connections in the building that have failed or collapsed during the RLE ground motions, (6) increasing reinforcement or wall thickness, or both, to provide additional strength or/and ductility for the failed or collapsed members and their connections, and (7) resubjecting the revised building design to the nonlinear dynamic response analyses as stated in step (4) until no collapse of the building and its members and their connections. This performance-based seismic design method is a direct, transparent, and scientific answer to whether these important seismic Category 1 structures meet the NRC’s policy that they will not collapse during the RLE ground motions. Examples of using the nonlinear dynamic response analyses are cited and described. Guidelines for the performance-based seismic design of seismic Category 1 concrete Structures are listed at the end of this paper.


Document: 

SP-337_01

Date: 

January 23, 2020

Author(s):

Widianto; Jameel Khalifa; Erik Åldstedt; Kåre O. Hæreid; Kjell Tore Fosså

Publication:

Symposium Papers

Volume:

337

Abstract:

An offshore concrete Gravity-Based-Structure (GBS) is a massive concrete structure placed on the seafloor and held in place strictly by its own weight, without need for anchors. This paper focuses on concrete GBSs used as the base of integrated oil drilling and production platforms. The summary of key distinct structural features of several major GBSs, since the first Ekofisk GBS (installed in the North Sea, offshore Norway, in 1973) until the latest Hebron GBS (installed in the Grand Banks, Canada, in 2017), is presented. This paper also discusses several unique loads that GBSs have to resist. An overview of structural analysis and design methodology is described in detail. Key considerations for preliminary sizing of GBS structural components are presented. Typical construction phases, methods, and the importance of constructability are explained. Finally, potential future research topics that would result in a more cost-effective offshore concrete GBS are discussed.


Document: 

SP-333_03

Date: 

October 1, 2019

Author(s):

Bruno Dal Lago, Davide Bisi and Liberato Ferrara

Publication:

Symposium Papers

Volume:

333

Abstract:

Basalt-Fiber Reinforced Polymer (BFRP) bars have been recently proposed to be used to prestress precast concrete elements. Mechanical properties, potential low production cost, low carbon footprint, and enhanced durability make the application of BFRP to prestressed concrete promising. Nevertheless, some issues related to anchorage and sustained stress still need to be fully addressed. Applications are so far limited to few laboratory tests. This paper discusses how the Serviceability Limit State (SLS) and Ultimate Limit State (ULS) checks of prestressed elements employing this technology vary with respect to elements pre-stressed with steel tendons. Furthermore, an attempt is made to investigate the potential application into the precast concrete industry, by analyzing several typical roof and floor slab elements with different cross-sections. This investigation highlights which type of element could be more advantageously switched to the use of pre-stressed BFRP bars, and at which cost in terms of structural performance.


Document: 

SP331-07

Date: 

February 1, 2019

Author(s):

Yasir M. Saeed and Franz N. Rad

Publication:

Symposium Papers

Volume:

331

Abstract:

This paper presents the experimental investigation of concrete beams pre-tensioned with Carbon Fiber Reinforced Polymer (CFRP) strands. Four rectangular prestressed concrete beams were fabricated and tested under cyclic loading, and then the beams were loaded monotonically until failure. All beams were prestressed with one 0.5-in. diameter (13 mm) CFRP strand. The results showed that bond failure between CFRP strands and surrounding concrete was the main cause of early and brittle failures. Adding extra steel stirrups improved the slippage resistance capacity but was not adequate to prevent slippage at higher loads. A new technique was developed and used by anchoring the CFRP strand at the ends using a steel-tube anchorage system. The new technique prevented the slippage and improved the flexural moment capacity by 39%. An analytical computer model was created to predict the load vs. deflection responses of the beams. The behavior of beams with CFRP strands were compared to beams with steel strands using the same computer program. It was found that CFRP beams had more flexural strength but lower ductility if both beams were designed to carry the same service loads.


12345...>>

Results Per Page 




Please enter this 5 digit unlock code on the web page.