ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 7782 Abstracts search results

Document: 

SP-360_34

Date: 

March 1, 2024

Author(s):

Adi Obeidah and Hani Nassif

Publication:

Symposium Papers

Volume:

360

Abstract:

Developments in the prestressed concrete industry evolved to incorporate innovative design materials and strategies driven towards a more sustainable and durable infrastructure. With steel corrosion being the biggest durability issue for concrete bridges, FRP tendons have been gaining acceptance in modern prestressed technologies, as bonded or unbonded reinforcement, or as part of a “hybrid” system that combines unbonded CFRP tendons and bonded steel strands. Assessments of the efficacy of hybrid-steel beams, combining bonded and unbonded steel tendons. in the construction of segmental bridges and in retrofitting damaged members has been established by several researchers. However, limited research has been conducted on comparable hybrid prestressed beams combining CFRP and steel tendons (hybrid steel-cfrp beams). This paper provides an insight on the flexural behaviour of eighteen prestressed beams tested under third-point loading until failure with the emphasis on the tendon materials (i.e., CFRP and steel) and bonding condition (i.e., bonded, unbonded). In addition, a comprehensive finite element analysis of the beams’ overall behaviour following the trussed-beam methodology is conducted and compared with the experimental results. Results show that hybrid beams, utilizing CFRP as the unbonded element maintained comparable performance when compared to hybrid steel beams. The results presented in this paper aim to expand the use of hybrid tendons and facilitate their incorporation into standard design provisions and guidelines.

DOI:

10.14359/51740646


Document: 

SP-360_04

Date: 

March 1, 2024

Author(s):

Ali Alatify and Yail J. Kim

Publication:

Symposium Papers

Volume:

360

Abstract:

The serviceability and ultimate limit states of a concrete member are reliant upon the bond of reinforcement. The performance of glass fiber reinforced polymer (GFRP) reinforced concrete structures is influenced by multiple parameters and one of these parameters is the bond length of GFRP rebars. The scope of the present research is to experimentally study the effects of fully and partially bonded rebars on the load-bearing capacity and cracking of GFRP-reinforced concrete beams. The beams with partially bonded reinforcement show reduced capacities compared with those with fully bonded reinforcement, and the former reveals localized cracks. The partially bonded beams fail as a result of concrete splitting, while their fully bonded counterparts fail by concrete crushing.

DOI:

10.14359/51740616


Document: 

SP-360_03

Date: 

March 1, 2024

Author(s):

Abubakar S. Ishaq, Maria M. Lopez, Charles E. Bakis, and Yoseok Jeong

Publication:

Symposium Papers

Volume:

360

Abstract:

This study evaluates the bond performance of concrete epoxy bonds using an image segmentation-based image processing technique. The Concrete Epoxy Interface (CEI) plays a crucial role in the structural performance of FRP-repaired concrete as it transfers stresses from the concrete to the epoxy. By employing the image segmentation technique, the performance of the CEI is assessed through the ratio of Interfacial Failure (IF) to other failure types, namely cohesive failure in Epoxy (CE) and Cohesive cracks in Concrete (CC). The effects of sustained loading duration on CEI bond performance are quantitatively analyzed using 21 single-lap shear (SLS) specimens and 28 notched 3-Point Bending (3PB) specimens. The findings highlight vital conclusions: CE is the least failure mode in SLS and 3PB specimens. In contrast, CC is the predominant failure mode, indicating the susceptibility of the concrete substrate in FRP-repaired concrete. Moreover, IF generally increases with longer sustained loading durations in 3PB specimens but decreases with increased loading duration in SLS specimens. The study also demonstrates the effectiveness of the image segmentation approach in evaluating CEI performance in 3PB specimens, where color distinguishes epoxy, FRP, and concrete substrate.

DOI:

10.14359/51740615


Document: 

SP361

Date: 

March 1, 2024

Author(s):

ACI Committees ACI Committees 130 and E702

Publication:

Symposium Papers

Volume:

361

Abstract:

Concrete has played a pivotal role in shaping the modern world’s infrastructure and the built environment. Its unparalleled versatility, durability, and structural integrity have made it indispensable in the construction industry. From skyscrapers to long-span bridges, water reservoirs, dams, and highways, the ubiquitous presence of concrete in modern society underscores its significance in global development. As we stand at the crossroads of environmental awareness and the imperative to advance our societies, the sustainability of concrete production and utilization is becoming a new engineering paradigm. The immense demand for concrete, driven by urbanization and infrastructure development, has prompted a critical examination of its environmental impact. One of the most pressing concerns is the substantial carbon footprint associated with traditional concrete production. The production of cement, a key ingredient in concrete, is a notably energy-intensive process that releases a significant amount of carbon dioxide (CO2) into the atmosphere. As concrete remains unparalleled in its ability to provide structural functionality, disaster resilience, and containment of hazardous materials, the demand for concrete production is increasing, while at the same time, the industry is facing the urgency to mitigate its ecological consequences. This special publication investigates the multi-faceted realm of concrete sustainability, exploring the interplay between its engineering properties, environmental implications, and novel solutions, striving to provide an innovative and holistic perspective. In recent years, the concrete industry has witnessed a surge of innovation and research aimed at revolutionizing its sustainability. An array of cutting-edge technologies and methodologies has emerged, each offering promise in mitigating the environmental footprint of concrete. Notably, the integration of supplementary cementitious materials, such as calcined clays and other industrial byproducts, has gained traction to reduce cement content while enhancing concrete performance. Mix design optimization, coupled with advanced admixtures, further elevates the potential for creating durable, strong, and eco-friendly concrete mixtures. Concrete practitioners will gain an advanced understanding of a wide variety of strategies that are readily implementable and oftentimes associated with economic savings and durability enhancement from reading these manuscripts. The incorporation of recycled materials, such as crushed concrete and reclaimed aggregates, not only reduces waste but also lessens the demand for virgin resources. Furthermore, the adoption of efficient production techniques, along with the exploration of carbon capture and utilization technologies, presents an optimistic path forward for the industry. This special publication aspires to contribute to the ongoing discourse on concrete sustainability, offering insights, perspectives, and actionable pathways toward a more environmentally conscious future.

DOI:

10.14359/51740669


Document: 

SP-360_26

Date: 

March 1, 2024

Author(s):

Marta Del Zoppo, Marco Di Ludovico, Alberto Balsamo and Andrea Prota

Publication:

Symposium Papers

Volume:

360

Abstract:

Unreinforced masonry buildings (URM) are particularly vulnerable to local out-of-plane failure mechanisms of the walls during earthquakes. This study investigates the effectiveness of a relatively novel class of inorganic composite materials, namely Fibre Reinforced Mortars (FRM), for the out-of-plane strengthening of masonry walls. Experimental tests by using a setup to perform out-of-plane tests on masonry panels, part of an enlarged ongoing testing campaign, are presented herein. Two types of masonry walls are investigated: solid clay brick masonry walls and tuff masonry walls. The specimens are subjected to compressive axial load and out-of-plane horizontal actions according to a “four-point bending test” scheme. Two specimens are reinforced before testing with FRM in double-side configuration, while other two specimens are tested in their bare configuration. Experimental results in terms of capacity curves and deformed shapes are reported and discussed. The preliminary results attest that FRMs are effective in increasing the out-of-plane capacity of masonry walls and in postponing the activation of the out-of-plane failure mechanism.

DOI:

10.14359/51740638


12345...>>

Results Per Page