ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 70 Abstracts search results
Document:
24-250
Date:
June 11, 2025
Author(s):
Pratik Gujar, Beng Wei Chong, Precious Aduwenye, Xijun Shi* and Zachary C. Grasley
Publication:
Materials Journal
Abstract:
This study investigates the feasibility of utilizing a hybrid combination of recycled steel fibers (RSF) obtained from scrap tires and manufactured steel fibers (MSF) in concrete developed for pavement overlay applications. A total of five concrete mixtures with different combinations of MSF and RSF, along with a reference concrete mixture, were studied to evaluate fresh and mechanical properties. The experimental findings demonstrate that the concretes incorporating a hybrid combination of RSF with hooked-end MSF exhibit comparable or higher splitting tensile strength, flexural strength, and residual flexural strength to that of concretes containing only hooked-end MSF, straight MSF, and RSF. This enhanced mechanical performance can be ascribed to the multiscale fiber reinforcement effect that controls different scales (micro to macro) of cracking, thereby providing higher resistance to crack propagation. The concretes containing only RSF show lower splitting tensile strength, flexural strength, and residual flexural strength compared to concrete solely reinforced with straight MSF or other steel fiber-reinforced concrete (SFRC) mixtures due to the presence of various impurities in the RSF, such as thick steel wires, residual rubber, and tire textiles. Interestingly, blending RSF with hooked-end MSF overcomes these limitations, enhancing tensile strength, flexural strength, and residual flexural strength, while significantly reducing costs and promoting sustainability. Lastly, the findings from the pavement overlay design suggest that utilizing a hybrid combination of RSF with hooked-end MSF can reduce the design thickness of bonded concrete overlays by 50% compared to plain concrete without fiber reinforcement, making it a practical and efficient solution.
DOI:
10.14359/51747871
24-346
Kamran Aghaee and Kamal H. Khayat
Ultra-high-performance geopolymer concrete (UHP-GPC) can exhibit high to exceptional strength. Given the importance of UHP-GPC’s mechanical properties, the prediction of its 28d compressive strength (f’c) remains insufficiently explored. This study predicts UHP-GPC’s f’c based on alkali-activated materials, sand, fiber volume, water-to-geopolymer binder, and alkali activator ratios. Advanced statistical modeling and a spectrum of ensemble machine learning (ML) algorithms, including random forest (RF), gradient boosting (GB), extreme gradient boosting (XGB), and stacking, are utilized to predict UHP-GPC’s strength. The derived models reveal the significance of fiber, slag, and sand as the most significant factors influencing the 28d f’c of UHP-GPC. All the ML models demonstrate higher precision in forecasting f’c of UHP-GPC compared to statistical modeling, with R2s peaking at 0.85. Equations are derived to predict the strength of UHP-GPC. This article reveals that UHP-GPC with superior mechanical properties can be designed for further sustainability.
10.14359/51747873
24-061
May 8, 2025
Tianyu Xiao and Sen Du
Engineered cementitious composites (ECC), a prominent innovation in the realm of concrete materials in recent years, contain a substantial amount of cement in their composition, thereby resulting in a significant environmental impact. To enhance the environmental sustainability of ECC, it is plausible to substitute a large portion of cement in the composition with fly ash, a by-product of coal-fired power plants. In recent years, there has been increased research in ECC containing high-volume fly ash (HVFA) binders and its wider application in construction practices. In this particular context, it becomes imperative to review the role of the HVFA binder in ECC. This review first examines the effects of incorporating an HVFA binder in ECC on fiber dispersion and fiber/matrix interface behavior. Additionally, mechanical properties, including the compressive strength, tensile behavior, and cracking behavior under loading, as well as durability performances of HVFA-based ECC under various exposure conditions, are explored. At last, the review summarizes the research needs pertaining to HVFA-based ECC, providing valuable guidance for future endeavors in this field.
10.14359/51746805
24-374
Norsuzailina Mohamed Sutan, Faisal Amsyar, Abdul Razak Abdul Karim, Norazzlina M.Sa’don, Yoeng Sebastian Shun Hui, and Chin Cerries Yee Jie
Engineered cementitious composites (ECC) represent a significant innovation in construction materials due to their exceptional flexibility, tensile strength, and durability, surpassing traditional concrete. This review systematically examines the composition, mechanical behaviour, and real-world applications of ECC, with a focus on how fiber reinforcement, mineral additives, and micromechanical design improve its structural performance. The present study reports on the effects of various factors, including different types of mineral admixtures, aggregate sizes, fiber hybridization, and specimen dimensions. Key topics include ECC’s strain-hardening properties, its sustainability, and its capacity to resist crack development, making it ideal for high-performance infrastructure projects. Additionally, the review discusses recent advancements in ECC technology, such as hybrid fibre reinforcement and the material’s growing use in seismic structures. The paper also addresses the primary obstacles, including high initial costs and the absence of standardized specifications, while proposing future research paths aimed at optimizing ECC’s efficiency and economic viability.
10.14359/51746811
24-215
March 17, 2025
Matthew Soltani, PhD, PE and Syed Ehtishamuddin
Structural Journal
Coastal reinforced concrete bridges are critical infrastructures, yet they face significant threats from corrosion due to saline environments and extreme loads like wave-induced forces and seismic events. This state-of-the-art review examines the resilience of corrosion-damaged RC bridges under such conditions. It compiles advanced methodologies and technological innovations to assess and enhance durability and safety. Key highlights include synthesizing loss estimation models with advanced reliability methods for a robust resilience assessment framework. Analyzing catastrophic bridge failures and environmental deterioration, the review underscores the urgent need for innovative materials and protective technologies. It emphasizes advanced analytical models like Performance-Based Earthquake Engineering (PBEE) and Incremental Dynamic Analysis (IDA) to evaluate combined impacts. The findings advocate for engineered cementitious composites (ECC) and advanced sensor systems for improved real-time monitoring and resilience. Future research should focus on developing comprehensive resilience models accounting for corrosion, seismic, and wave-induced loads to enhance infrastructure safety and sustainability.
10.14359/51746676
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer