International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 74 Abstracts search results

Document: 

24-380

Date: 

November 6, 2025

Author(s):

Tae-Sung Eom, Seung-Jae Lee, and Insung Kim

Publication:

Structural Journal

Abstract:

In this study, the behavior of diaphragm-to-wall connections with collector reinforcement and construction joints was investigated. Four slab-to-wall connection specimens were tested under cyclic loading. Diaphragm connection details, such as shear friction reinforcement (i.e., slab dowel bars anchored by 90-degree hooks within the wall) and the use of spandrel beams as collectors, were considered as test variables. When fabricating the specimens, concrete was consecutively cast for the wall and slab, and construction joints were placed on the sides of the wall and spandrel beams. The tests showed that the diaphragm connections exhibited the typical ductile behavior characterized by the robust initial stiffness and subsequent post-yield plastic behavior. Before concrete failure on the front of the wall, the load transfer from the diaphragm to the wall was governed by a nodal zone action; then, the subsequent connection behavior was dominated by shear friction as sliding failure occurred on the side of the wall along the slab construction joints. The diaphragm-to-wall connection strengths were evaluated using the strut-and-tie model and shear friction theory. The calculated strengths were in good agreement with the test strengths. Based on the investigation results, design considerations of the diaphragm-to-wall connection were proposed.

DOI:

10.14359/51749304


Document: 

23-264

Date: 

July 1, 2025

Author(s):

M.-Y. Cheng, P.-J. Chen, C.-H. Chen, B. L. Worsfold, G. J. Parra-Montesinos, and J. P. Moehle

Publication:

Structural Journal

Volume:

122

Issue:

4

Abstract:

Recent tests showed that anchorage failure could be the primary mechanism that limits the strength and deformation capacity of column-footing connections. An experimental program consisting of the reversed cyclic load testing of 16 approximately full-scale column-footing subassemblages was thus conducted to investigate the effect of various reinforcement details on connection strength, drift capacity, and failure mode. The main parameters evaluated were type of anchorage for the column longitudinal bars (either hooks or heads), extension of column transverse reinforcement into the footing, and longitudinal and transverse reinforcement ratios in the footing. Test results indicate that even when column longitudinal reinforcement extends into the joint with a development length in accordance with ACI 318-19, a cone-shaped concrete breakout failure may occur, limiting connection strength and deformation capacity. The use of transverse reinforcement in the connection over a region extending up to one footing effective depth away from each column face proved effective in preventing a concrete breakout failure. However, for the specimens with column headed bars, extensive concrete crushing adjacent to the bearing side of the heads and spalling beyond the back side of the heads led to significant bar slip and “pinching” in the load versus drift hysteresis loops at drift ratios greater than 3%. The use of U-shaped bars in the joint between the column and the footing or slab, as recommended in ACI 352R-02, led to improved behavior in terms of strength and deformation capacity, although it did not prevent the propagation of a cone-shaped failure surface outside the joint region. Based on the test results, the basic concrete breakout strength, Nb, corresponding to a 50% fractile, in combination with a cracking factor ψc,N = 1.25, is recommended when using Section 17.6.2. of ACI 318-19 for calculation of concrete breakout strength in connections similar to those tested in this investigation.

DOI:

10.14359/51746671


Document: 

22-392

Date: 

March 1, 2025

Author(s):

Jong-Hoon Kwon, Bum-Sik Lee, Sung-Hyun Kim, and Hong-Gun Park

Publication:

Structural Journal

Volume:

122

Issue:

2

Abstract:

The present study investigated the contribution of slabs to the lateral load-carrying capacity of shear walls coupled with slabs. Cyclic lateral load tests were conducted on five two-story wall specimens at half scale. The test parameters included the thickness of the slab, the wall opening length, the use of punching shear reinforcement, and the use of parallel walls. The test results showed that, due to the slab effect, the strengths of the coupled wall specimens were 38 to 88% greater than the strength of walls without the slab effect. Furthermore, the initial stiffness of the specimens was significantly increased by the slab effect. During early loading, local failure of the slabs occurred at the wall-slab connection. However, the coupled walls exhibited ductile behavior up to a 2% drift ratio, without significant degradation of strength. Nonlinear finite element analysis was performed on the test specimens. Based on the results, the initial stiffness and effective stiffness of the walls and coupling slabs were evaluated for the seismic design of coupled walls.

DOI:

10.14359/51743301


Document: 

20-519

Date: 

January 1, 2022

Author(s):

Seung-Ho Choi, Deuckhang Lee, and Kang Su Kim

Publication:

Structural Journal

Volume:

119

Issue:

1

Abstract:

This study presents an analytical model for estimating the effective compressive strength of a reinforced concrete (RC) column intersected by a floor slab made of relatively low-grade concrete. The proposed model is based on a theoretically sound background and considers the force equilibrium and strain compatibility conditions in the vicinity of the interface between the upper and lower columns and an intervening slab. By using the parametric study results obtained from finite element analyses, the effects of the confinement provided by the surrounding slab and the secondary stresses induced by the Poisson effect in the columns and slab panel zone were formulated in detail. A simple design expression was then derived for the better applicability of the proposed method for the estimation of the effective compressive strength of the exterior and interior columns with an intervening slab, in a unified manner. To verify the proposed model, the test results of 81 exterior columns and 24 interior columns were collected from the literature. It was found that the effective compressive strengths obtained by the proposed methods were in good agreement with these test results.

DOI:

10.14359/51733005


Document: 

20-417

Date: 

November 1, 2021

Author(s):

Y. Tao, G. Vantyghem, K. Lesage, Y. Yuan, W. De Corte, K. Van Tittelboom, and G. De Schutter

Publication:

Materials Journal

Volume:

118

Issue:

6

Abstract:

Shotcrete used for rock tunnel linings calls for skilled technicians, which is the key aspect to control the rebound. Three-dimensional (3D) concrete printing of tunnel linings has the potential to reduce manual labor for construction workers and to eliminate rebound, especially at overhead positions. In this study, the sag resistance and bond properties of printable concrete for overhead applications were explored. Mixtures with the addition of redispersible polymer powders (RDPs) and cellulose ethers (CE) were formulated. Roughened concrete slabs were used to replace the tunnel wall rock. A tack test with a loading control mode and a stress growth test were performed. To verify the results of the tack test and the stress growth test, a 3D concrete printing test, involving upside-down printing against the lower face of a supported concrete slab, was performed afterward. Also, a pulloff test was performed to measure the bond strength of the printed layers in the hardened stage. The results showed that the sag resistance of printable concrete is related to two aspects: the adhesion at the interface and the shear resistance of the fresh material itself. The adhesion and shear resistance properties determined two different failure modes: adhesion failure and cohesion failure. The results also demonstrated that the tack test results were more consistent with the upside-down printing test results, compared to the stress growth test.

DOI:

10.14359/51733105


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer