ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 183 Abstracts search results
Document:
25-025
Date:
October 15, 2025
Author(s):
Abdelazim Mohamed, Shehab Mehany, Abdoulaye S. Bakouregui, Hamdy M. Mohamed, and Brahim Benmokrane
Publication:
Structural Journal
Abstract:
The challenges of deterioration and increasing maintenance costs in steel-reinforced concrete railway sleepers emphasize the urgent need for innovative, durable, and sustainable alternatives. This study evaluated the shear strength of precast concrete sleepers prestressed with basalt fiber-reinforced polymer (BFRP) rods, using normal self-consolidating concrete (NSCC) and fiber-reinforced self-consolidating concrete (FSCC). Seven full-scale specimens, each 2590 mm (8 ft, 6 in.) in length and prestressed to 30% of the tensile strength of BFRP rods in accordance with the Canadian Highway Bridge Design Code (CHBDC), were tested to assess cracking loads, ultimate strength, bond behavior, and failure mechanisms. All tests were conducted in accordance with the American Railway Engineering and Maintenance-of-Way Association (AREMA) guidelines. The results indicate that all specimens met AREMA design load requirements without visible cracks or slippage based on a train speed of 64 km/h (40 mph), annual traffic of 40 MGT (million gross tons), and sleeper spacing of 610 mm (24 in.). Comparative analysis using CSA S806-12 (R2021) design standard and ACI 440.4R-04 (R2011) design guide revealed that predictions based on CSA S806-12 (R2021) were less conservative than those from ACI 440.4R-04 (R2011) for the shear strength of BFRP prestressed sleepers. The BFRP rods exhibited excellent tensile performance, with minimal prestress losses, and their sand-coated surface ensured efficient load transfer by preventing slippage and enhancing the bond strength. FSCC specimens demonstrated delayed cracking, enhanced crack control, and ductility compared to NSCC specimens. These findings highlight the potential of BFRP prestressed concrete sleepers, particularly when combined with FSCC, as a sustainable solution for railway infrastructure, emphasizing the need for a design code refinement for BFRP applications.
DOI:
10.14359/51749263
24-159
August 19, 2025
Mojtaba Kohandelnia and Ammar Yahia
Materials Journal
Despite the advantageous features of earthen construction for sustainability, certain limitations arise, notably the time-intensive nature of the construction process. Some efforts have been made to achieve self-consolidating earth concrete (SCEC) by overcoming the presence of fine particles to achieve adequate rheology. The impact of cement, metakaolin, and limestone filler on dry flowability characteristics, rheology, workability, and compressive strength of self-consolidating earth paste (SCEP) mixtures was assessed in this study. The investigated mixtures were proportioned with different clay compositions, polycarboxylate ether (PCE), with/without the initial addition of sodium hexametaphosphate (NaHMP) as a clay dispersant. It was revealed that the addition of NaHMP and metakaolin to the mixtures consisting of finer clay particles significantly increased static yield stress, build-up index, critical shear strain, and storage modulus evolution. Finally, the contribution of dry flowability characteristics of the powders to the rheological properties of the SCEP mixtures was investigated to facilitate the selection process.
10.14359/51749122
24-169
July 1, 2025
E. Ibrahim, Abdoulaye Sanni B., A. E. Salama, A. Yahia, and B. Benmokrane
Volume:
122
Issue:
4
This study investigated the serviceability behavior and strength of polypropylene fiber (PF)-reinforced self-consolidating concrete (PFSCC) beams reinforced with glass fiber-reinforced polymer (GFRP) bars. Five full-scale concrete beams measuring 3100 mm long x 200 mm wide x 300 mm deep (122.1 x 7.9 x 11.8 in.) were fabricated and tested up to failure under four-point bending cyclic loading. Test parameters included the longitudinal reinforcement ratio (0.78, 1.18, and 1.66%) and PF volume (0, 0.5, and 0.75% by concrete volume). The effect of these parameters on serviceability behavior and strength of the test specimens is analyzed and discussed herein. All the beams were evaluated for cracking behavior, deflection, crack width, strength, failure mode, stiffness degradation, and deformability factor. The test results revealed that increasing the reinforcement ratio and PF volume enhanced the serviceability and flexural performance of the beams by effectively restraining crack widths, reducing deflections at the service and ultimate limit states, and decreasing residual deformation. The stiffness exhibited a fast-to-slow degradation trend until failure for all beams, at which point the beams with a higher reinforcement ratio and fiber volume evidenced higher residual stiffness. The cracking moment, flexural capacities, and crack width of the tested beams were predicted according to the North American codes and design guidelines and compared with the experimental ones. Lastly, the deformability for all beams was quantified with the J-factor approach according to CSA S6-19. Moreover, the tested beams demonstrated adequate deformability as per the calculated deformability factors.
10.14359/51745489
24-029
S. Ali Dadvar, S. Mousa, H. M. Mohamed, A. Yahia, and B. Benmokrane
Limited research work has been done so far on fibrous self-consolidating concrete (FSCC) columns reinforced with fiber-reinforced polymer (FRP) bars under axial compressive load. This paper presents an experimental study of innovative FSCC columns reinforced with basalt FRP (BFRP) bars. The main objectives of this study included investigating the compression behavior and failure mechanisms of full-scale circular FSCC columns reinforced with BFRP bars and ties. In addition, analyzing the impact of using synthetic fibers on the peak capacity and pseudo-ductility of the BFRP-FSCC columns was considered. For this study, a total of eight columns were tested under concentric load, and the test variables were the longitudinal reinforcement ratio, transverse reinforcement ratio, and reinforcement and concrete types. Test results revealed that the FSCC column reinforced with BFRP bars and the FSCC column reinforced with steel bars had similar behavior and failure modes. The compression failure in the concrete controlled the ultimate capacity of specimens. Lastly, adding fibers improved the specimens’ peak load, post-peak behavior, and pseudo-ductility under axial compression load.
10.14359/51746672
22-290
August 1, 2024
Ahmed T. Omar, Basem H. AbdelAleem, and Assem A. A. Hassan
121
This paper investigates the structural performance of lightweight self-consolidating concrete (LWSCC) and lightweight vibrated concrete (LWVC) beam-column joints (BCJs) reinforced with monofilament polyvinyl alcohol (PVA) fibers under quasistatic reversed cyclic loading. A total of eight exterior BCJs with different lightweight aggregate types (coarse and fine expanded slate aggregates), different PVA fiber lengths (8 and 12 mm [0.315 and 0.472 in.]), and different percentages of fiber (0.3 and 1%) were cast and tested. The structural performance of the tested joints was assessed in terms of failure mode, hysteretic response, stiffness degradation, ductility, brittleness index, and energy dissipation capacity. The results revealed that LWSCC specimens made with expanded slate lightweight fine aggregates (LF) appeared to have better structural performance under reversed cyclic loading than specimens containing expanded slate lightweight coarse aggregates (LC). Shortening the length of PVA fibers enhanced the structural performance of LWSCC BCJs in terms of initial stiffness, load-carrying capacity, ductility, cracking activity, and energy dissipation capacity compared to longer fibers. The results also indicated that using an optimized LWVC mixture with 1% PVA8 fibers and a high LC/LF aggregate ratio helped to develop joints with significantly enhanced load-carrying capacity, ductility, and energy dissipation while maintaining reduced self-weight of 28% lower than normalweight concrete (NWC).
10.14359/51740773
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer