International Concrete Abstracts Portal

Showing 1-5 of 698 Abstracts search results

Document: 

23-259

Date: 

April 25, 2025

Author(s):

Han-Se Moon, Kwang-Won Jo, Hyeon-Jong Hwang, Chang-Soo Kim, Jae-Hong Jeong, Chan-Kyu Park, Hong-Gun Park

Publication:

Structural Journal

Abstract:

Slag-based zero-cement concrete (ZC) of high strength (60 MPa [8.70 ksi]) was developed as an eco-friendly construction material. In the present study, to investigate the structural behavior of precast columns using ZC, cyclic loading tests were performed for five column specimens with reinforcement details of ordinary moment frames. Longitudinal reinforcement was connected by sleeve splices at the precast column–footing joint. The test parameters included the concrete type (Portland cement-based normal concrete [NC] vs. ZC), construction method (monolithic vs. precast), longitudinal reinforcement ratio, and sleeve size. The test results showed that the structural performance (failure mode, strength, stiffness, energy dissipation, and deformation capacity) of the precast ZC columns was comparable to that of the monolithic NC and precast NC columns, and the tested strengths agreed with the nominal strengths calculated by ACI 318-19. These results indicate that current design codes for cementitious materials and sleeve splice of longitudinal reinforcement are applicable to the design of precast ZC columns.

DOI:

10.14359/51746791


Document: 

24-101

Date: 

April 9, 2025

Author(s):

Selva Ganesa Moorthi A. and G. Appa Rao

Publication:

Structural Journal

Abstract:

This paper discusses the seismic performance of precast coupled structural walls with the influence of connections and their location. Full-scale quasi-static tests were conducted on the coupled structural walls by varying the number of connections. The test results show that the number of connections and their position along the height of the coupled wall significantly influence the lateral strength, stiffness, energy dissipation, and failure modes. Walls with two connections seem to improve the strength and hysteretic response, exhibiting superior cyclic performance. Increasing the number of connections improves the initial stiffness to a certain extent, but the designs are expensive. Walls with connections closer to lateral loading lines exhibit vulnerability, requiring design to optimize energy dissipation and crack control. Connections with over-strength may need to be avoided as they may not increase the energy dissipation under earthquake loading. The outcomes of the study help in designing precast systems with better seismic resilience, good ductility, and ease of replacement after an earthquake hits the system.

DOI:

10.14359/51746756


Document: 

24-180

Date: 

April 9, 2025

Author(s):

Mario E. Rodriguez and José I. Restrepo

Publication:

Structural Journal

Abstract:

Linear structural analysis is the method of choice commonly used by practicing engineers to support the seismic design of a structure. The structural models are developed in commercial software and incorporate stiffness modifiers, which lower the stiffness of the members, in recognition of all the sources of flexibility that occur upon cracking of the concrete. This paper describes a mechanics-based model to compute the stiffness modifiers for columns with a circular cross-section. The mechanics-based model accounts for five modes of deformation observed. Calibration of this model was performed with a database of tests reported in the literature on twenty-two circular-section columns that exhibited ductile response. The paper ends by describing a simplified method for use in design. The mechanics-based model and the design method yield an effective column lateral stiffness that closely aligns with the values obtained from the column database.

DOI:

10.14359/51746758


Document: 

24-215

Date: 

March 17, 2025

Author(s):

Matthew Soltani, PhD, PE and Syed Ehtishamuddin

Publication:

Structural Journal

Abstract:

Coastal reinforced concrete bridges are critical infrastructures, yet they face significant threats from corrosion due to saline environments and extreme loads like wave-induced forces and seismic events. This state-of-the-art review examines the resilience of corrosion-damaged RC bridges under such conditions. It compiles advanced methodologies and technological innovations to assess and enhance durability and safety. Key highlights include synthesizing loss estimation models with advanced reliability methods for a robust resilience assessment framework. Analyzing catastrophic bridge failures and environmental deterioration, the review underscores the urgent need for innovative materials and protective technologies. It emphasizes advanced analytical models like Performance-Based Earthquake Engineering (PBEE) and Incremental Dynamic Analysis (IDA) to evaluate combined impacts. The findings advocate for engineered cementitious composites (ECC) and advanced sensor systems for improved real-time monitoring and resilience. Future research should focus on developing comprehensive resilience models accounting for corrosion, seismic, and wave-induced loads to enhance infrastructure safety and sustainability.

DOI:

10.14359/51746676


Document: 

24-062

Date: 

March 17, 2025

Author(s):

Abhishek Kumar and G Appa Rao

Publication:

Structural Journal

Abstract:

Lap splicing of longitudinal reinforcing bars in shear walls is often encountered in practice, and the transfer of forces in lap-spliced reinforcing bars to the surrounding concrete depends on the bond strength. Buildings with shear walls during an earthquake develop plastic hinges in the shear walls, particularly where the reinforcing bars are lap-spliced. Brittle failure is commonly observed in reinforcing bar lap-spliced shear walls, which needs to be minimized by choosing the appropriate percentage of lap-spliced reinforcing bars. Therefore, it is essential to address the detailing of the lap-spliced regions of reinforced concrete (RC) shear walls. Several seismic design codes provide guidelines on lap-spliced detailing in shear walls related to its location, length of lap-splice, confinement reinforcement, and percentage of reinforcing bars to be lap-spliced. In this study, the percentage of reinforcing bars to be lap-spliced at a section is examined with staggered lap-splicing of 100, 50, and 33% of longitudinal reinforcing bars, in addition to a control RC shear wall without lap-splicing. This study tested four half-scale RC shear walls with boundary element (BE), designed as per IS 13920 and ACI 318, under quasi-static reversed cyclic loading. From the experimental study, it is observed that the staggered lap splicing of reinforcing bars nominally reduces the performance of shear walls under cyclic load in terms of the reduced flexural strength, deformation capacity, energy dissipation, and ductility of the shear walls compared to the control shear wall without lap splicing. It is also observed that the unspliced reinforcing bars do not sustain the cyclic loading in staggered lap-splice after the post-peak. Current provisions of ACI 318, EC2, and IS 13920 recommend staggered lap-splice detailing in shear walls. However, from the current study, shear walls with different percentages of staggered lap splice show that the staggered lap-splice detailing in shear walls does not improve its seismic performance.

DOI:

10.14359/51746673


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer