International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 84 Abstracts search results

Document: 

24-429

Date: 

January 1, 2026

Author(s):

Mark Bediako and Timothy Kofi Ametefe

Publication:

Materials Journal

Volume:

123

Issue:

1

Abstract:

Portland-limestone cement (PLC) currently has gained widespread use as the most accessible and sustainable blended cement in the market. However, in many African countries, including Ghana, the use of clay pozzolana (CP) in the concrete industry has primarily relied on ordinary portland cement (OPC). In this study, PLC Type II/B-L was partially replaced with CP at levels ranging from 10 to 50% by weight. The investigation included compressive strength testing, nondestructive evaluations using electrical surface resistivity, pulse velocity, and chloride penetration tests, targeting a characteristic strength of 30 MPa (4351.13 psi). Additionally, an environmental impact assessment based on the carbon footprint of both control and CP concretes was conducted. The mixture design followed the EN 206 standard. A total of 72 cubic molds were produced for the strength test. The results showed that CP concretes with between 10 and 20% replacement achieved strength values of 35 and 33 MPa (5076.4 and 4786.32 psi), respectively, higher than the target of 30 MPa (4351.13 psi) strength at 28 days. However, mixtures with 30 to 50% replacement required extended curing periods of 60 to 90 days to reach the desired strength. At extended curing, 10 to 50% CP replacement attained strength between 32 and 41 MPa (4641.28 and 5946.64 psi). Nondestructive test results showed no direct correlation with compressive strength, confirming that different factors govern strength, resistivity, and pulse velocity. The environmental impact assessment revealed a 14 to 51% reduction in carbon strength index (CSi) and a 19 to 36% increase in carbon durability index (CRi) with 10 to 50% CP (for CSi) and 10 to 40% (for CRi). The thermodynamic modeling also revealed that pozzolana contents below 30% primarily promoted pozzolanic reactions, enhancing performance compared to the control mixture. Based on these results, 20 to 30% CP replacement is recommended to ensure reliable performance, while higher levels (>30%) require further durability evaluation for long-term use.

DOI:

10.14359/51749251


Document: 

23-256

Date: 

December 1, 2024

Author(s):

David C. Burney, Kimberly E. Kurtis, Laurence J. Jacobs, and Ryan J. Sherman

Publication:

Materials Journal

Volume:

121

Issue:

6

Abstract:

Despite improvements in nondestructive testing (NDT) technologies, the quality assurance of concrete reinforcing bar placement is still primarily conducted with conventional methodologies, which can be time-consuming, ineffective, and damaging to the concrete components. This study investigated the performance of two commercially available cover meters and one groundpenetrating radar (GPR) device. A cover meter was found to have the greatest accuracy for depths smaller than 3.19 in. (81.0 mm), while the GPR performed better for greater depths. The effect of reinforcing bar depth, diameter, and type; neighboring reinforcing bars; and concrete conditioning on the performance of the devices was quantified. The use of epoxy-coated reinforcing bar, galvanized reinforcing bar, and stainless-steel reinforcing bar were found to have a negligible effect on cover meter accuracy. A model was developed to predict the precision of the GPR post-measurement analysis given a depth and concrete dielectric constant.

DOI:

10.14359/51742260


Document: 

22-376

Date: 

December 1, 2023

Author(s):

Zachary W. Coleman and Anton K. Schindler

Publication:

Materials Journal

Volume:

120

Issue:

6

Abstract:

In this study, a procedure for interpreting impact-echo data in an automated, simple manner for detecting defects in concrete bridge decks is presented. Such a procedure is needed because it can be challenging for inexperienced impact-echo users to correctly distinguish between sound and defective concrete. This data interpretation procedure was developed considering the statistical nature of impact-echo data in a manner to allow impact-echo users of all skill levels to understand and implement the procedure. The developed method predominantly relies on conducting segmented linear regression analysis of the cumulative probabilities of an impact-echo data set to identify frequency thresholds distinguishing sound concrete from defective concrete. The accuracy of this method was validated using two case studies of five slab specimens and a full-scale bridge deck, each containing various typical defects. The developed procedure was found to be able to predict the condition of the slab specimens containing shallow delaminations without human assistance within 3.1 percentage points of the maximum attainable accuracy. It was also able to correctly predict the condition of the full-scale bridge deck containing delaminations, voids, corrosion damage, concrete deterioration, and poorly constructed concrete within 3.5 percentage points of the maximum attainable accuracy.

DOI:

10.14359/51739149


Document: 

20-490

Date: 

March 1, 2023

Author(s):

Yail J. Kim and Jun Wang

Publication:

Structural Journal

Volume:

120

Issue:

2

Abstract:

This paper presents a case study on the evaluation of bridge decks using various nondestructive test methods. In consultation with a local transportation agency, five representative bridges are selected and assessed by qualitative/empirical (visual inspection and chain drag) and quantitative (ground-penetrating radar [GPR] and rebound hammer) approaches. The primary interest lies in quantifying delaminated areas in deck concrete, which has been a major problem in the bridge engineering community because conventional GPR contours provide a wide range of deterioration that differs from the amount of actual repair. A consistent condition rating of 7 has been assigned to all decks over a decade old, aligning with the outcomes of chain drag: delamination of less than 3.31% of the entire deck area. The variable scanning rates of GPR (4 to 20 scans/ft [13 to 66 scans/m]) influence contour mapping, whereas mutual correlations associated with these rates are insignificant. A tolerable range of ±20% is suggested for interpreting GPR contour maps at a 95% confidence interval. The performance threshold limit of 20% used to identify degraded concrete in rebound hammering exhibits a coefficient of correlation of 0.967 against GPR-based deterioration; however, the results of these methods deviate from the areas of actual repair. For practical implementation, analytical and computational models are formulated to decompose the intensity of GPR scales into two categories: initiation and progression of corrosion (0 to 39%) and delamination of deck concrete (40 to 100%), which show good agreement with the repaired areas. Parametric investigations emphasize the significance of reinforcing bar spacing and concrete cover in determining the extent of delamination in the concrete decks.

DOI:

10.14359/51734822


Document: 

22-023

Date: 

November 1, 2022

Author(s):

Saman Hedjazi and Ehsanul Kabir

Publication:

Materials Journal

Volume:

119

Issue:

6

Abstract:

Chloride diffusivity and steel corrosion are two major factors in the durability characteristics of concrete structures. It is possible to use the electrical resistivity (ER) of concrete as a measure of concrete’s ability to resist the movement of ions within the material. In this study, surface electrical resistivity (SR) and bulk electrical resistivity (BR) of concrete cylinders were measured from 3 to 161 days for concrete mixtures with four varying water-cement ratios (w/c) (0.45 to 0.60) and three distinct cement types. The study investigated the influence of important durability parameters such as cement type, long-term curing period, and w/c on concrete electrical resistivity. In addition, the impact of cylinder size on SR of concrete was observed. The findings show that both SR and BR of concrete decrease with increasing w/c, except for concrete with cement Type-I/II, which showed a minor increase in resistivity with a w/c of 0.55. Concrete with Type-V cement showed the highest electrical resistance. Moreover, a strong linear relationship between the two types of resistivity was established, and a new equation was introduced in terms of cement type, w/c, and long-term curing period. The correlation between SR and BR was validated by determining the mean absolute error (MAE) of the proposed equation for the three types of cement, which were 0.41 (Type-I/II), 0.65 (Type-III), and 0.35 (Type-V). For all three cement types, the mean absolute percentage error (MAPE) and coefficient of variation (COV) were within acceptable limits, and the 95% confidence interval (CI) indicated a small error margin for the proposed equation when estimating BR from SR using experimental data. Statistical analysis showed that the new equation was less reliable for Type-III cement than the other two types, possibly due to its rapid strength increase property.

DOI:

10.14359/51737191


12345...>>

Results Per Page