International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 86 Abstracts search results

Document: 

24-382

Date: 

September 10, 2025

Author(s):

Deju Zhu, Guoxi Zeng, Weilin Zhong, Weijian Yi, Shuaicheng Guo

Publication:

Structural Journal

Abstract:

The influence of alkaline aging on the basalt fiber-reinforced polymer (BFRP) bar reinforced concrete beam has not been thoroughly investigated, and the deterioration level can be further increased in seawater sea sand concrete (SSC) due to increased alkalinity. This study aims to unveil the coupled influence mechanism of accelerated sweater aging and impact loading on the impact resilience of BFRP-SSC beams. The influence of concrete strength, reinforcement ratio, falling weight height, and accelerated aging in seawater on the impact resistance of BFRP-SSC beam is examined. The results indicate that enhancing concrete strength can more obviously increase the peak impact force than enhancing the reinforcement ratio due to the higher strain rate sensitivity. The increased falling weight energy can increase the peak impact force while reducing the residual bearing capacity. The accelerated aging in seawater can reduce the peak impact force and increase the maximum midspan displacement. And the impact failure mode of the BFRP-SSC beam can be changed from concrete crushing to BFRP bar fracture due to the bar degradation. The peak impact force of beam specimens soaked in seawater at room temperature and 55°C conditions is reduced by 13.8% and 15.5%, while the maximum midspan displacements are increased by 32.2% and 47.1%, respectively. This study can serve as a solid base for the impact design of FRP bar reinforced seawater sea-sand and concrete beams.

DOI:

10.14359/51749167


Document: 

23-304

Date: 

May 1, 2025

Author(s):

Gray Mullins, Rajan Sen, David Ostrofsky, and Kwangsuk Suh

Publication:

Structural Journal

Volume:

122

Issue:

3

Abstract:

This study characterized pitting corrosion in prestressed piles, linked it to stress concentration factors through ultimate strength tests, and incorporated the findings into a simple predictive damage assessment model. Six one-third-scale Class V concrete prestressed piles were exposed for 38 months to outdoor tidal cycles simulating a marine environment. At the end of exposure, 24 strands were extracted from the piles, and corrosion loss along the strands was quantified using a new Pascal’s law-based strand profiler. This identified regions of locally higher steel loss caused by pitting corrosion. The same data set was used to confirm gravimetric loss measurements by summing localized section losses over the specimen length. Profiler data was complemented by microscopic imaging to further define pitting geometry. Ultimate load tests were conducted to examine the effect of pitting on residual tensile strength and ductility. Similitude principles were used to develop a model for predicting in-service stress in pile strands using available inspection report crack width data.

DOI:

10.14359/51745641


Document: 

24-020

Date: 

December 1, 2024

Author(s):

Ben Wang, Abdeldjelil Belarbi, Bora Gencturk, and Mina Dawood

Publication:

Materials Journal

Volume:

121

Issue:

6

Abstract:

This study reviewed, synthesized, and extended the service life prediction models for conventional reinforced concrete (RC) structures to those with advanced concrete materials (that is, high-performance-concrete [HPC] and ultra-high-performance concrete [UHPC]), and corrosion-resistant steel reinforcements (that is, epoxy-coated [EC] steel, high chromium [HC] steel, and stainless- steel [SS]) subjected to chloride attack. The developed corrosion initiation and propagation models were validated using field and experimental data from literature. A case study was performed to compare the corrosion initiation and propagation times, and service life of RC structures with different concretes and reinforcements in various environments. It was found that UHPC structures surpassed 100 years of service life in all studied environments. HPC enhanced the service life of conventional normal-strength concrete (NC) structures by over three times. In addition, the use of corrosion-resistant reinforcement prolonged the service life of RC structures. The use of HC steel or epoxy-coated steel doubled the service life in both NC and HPC. SS reinforcement yielded service lives exceeding 100 years in all concrete types, except for NC structures in marine tidal zones, which showed an 88-year service life.

DOI:

10.14359/51742263


Document: 

23-078

Date: 

July 1, 2024

Author(s):

Shuaicheng Guo, Zhenqin Xu, and Deju Zhu

Publication:

Structural Journal

Volume:

121

Issue:

4

Abstract:

Reinforcing seawater sea-sand concrete (SSC) with basalt fiber reinforced polymer (BFRP) bars can adequately resolve chloride corrosion issues. However, the multiple-element ions in seawater and sea sand can increase the concrete alkalinity and accelerate the degradation of BFRP bars. This study aims to enhance the durability performance of BFRP-SSC beams by regulating concrete alkalinity. A low-alkalinity SSC (L-SSC) is designed by incorporating a high-volume content of fly ash and silica fume. A total of 16 BFRP-SSC beams were designed based on the current standards and prepared using normal SSC (N-SSC) and L-SSC. The beam flexural performances before and after long-term exposure are characterized through the four-point bending test. The test results indicate that exposure in the simulated marine environment can reduce the load-bearing capacity and change the failure mode of BFRP beams with N-SSC. After exposure at 55°C for 4 months, the load-bearing capacity of the BFRP-SSC beams was reduced by 70.0%. Moreover, a slight enhancement of load-bearing capacity and ductility of the BFRP-L-SSC beams was observed due to the enhanced interface performance with further concrete curing. Furthermore, the long-term performance of the sand-coated BFRP bars is better than that of the BFRP bars with deep thread. The load-bearing capacity of the BFRP-L-SSC beams increased by approximately 20% after 4 months of accelerated aging due to concrete strength growth, and the BFRP-L-SSC beams maintained the concrete crushing failure mode after exposure. Finally, a loadbearing capacity calculation model for the BFRP-SSC beams is proposed based on the experimental investigation, and its prediction accuracy is higher than that of the current standards. This study can serve as a valuable reference for applying BFRP-SSC structures in the marine environment.

DOI:

10.14359/51740569


Document: 

23-191

Date: 

May 1, 2024

Author(s):

P. Mohsenzadeh Tochahi, G. Asadollahfardi, S. F. Saghravani, and N. Mohammadzadeh

Publication:

Materials Journal

Volume:

121

Issue:

3

Abstract:

In marine structures, concrete requires adequate resistance against chloride-ion penetration. As a result, numerous studies have been conducted to enhance the mechanical properties and durability of concrete by incorporating various pozzolans. This research investigated the curing conditions of samples including zeolite and metakaolin mixed with micro-/nanobubble water in artificial seawater and standard conditions. The results indicated that incorporating zeolite and metakaolin mixed with micro-/nanobubble water, cured in artificial seawater conditions, compared to similar samples that were cured in standard conditions, improved the mechanical properties and durability of concrete samples. The 28-day compressive strength of the concrete samples containing 10% metakaolin mixed with 100% micro-/nanobubble water and 10% zeolite blended with 100% micro-/nanobubble water cured in seawater increased by 25.06% and 20.9%, respectively, compared to the control sample cured in standard conditions. The most significant results were obtained with a compound of 10% metakaolin and 10% zeolite with 100% micro-/nanobubble water cured in seawater (MK10Z10NB100CS), which significantly increased the compressive, tensile, and flexural strengths by 11.13, 14, and 9.1%, respectively, compared with the MK10Z10NB100 sample cured in standard conditions. Furthermore, it considerably decreased the 24-hour water absorption and chloride penetration at 90 days— by 27.70 and 82.89%, respectively—compared with the control sample cured in standard conditions.

DOI:

10.14359/51740567


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer