ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 316 Abstracts search results
Document:
24-378
Date:
January 21, 2026
Author(s):
Min-Yuan Cheng, Marnie B. Giduquio, Terry Y. P. Yuen, and Rémy D. Lequesne
Publication:
Structural Journal
Abstract:
Concentrated shear deformation near the base of a squat wall, referred to herein as sliding shear, is one of the major mechanisms that can limit the strength and deformation capacity of reinforced concrete (RC) low-rise or squat walls. This paper reports tests of five large-scale RC squat wall specimens without axial load to investigate the effects of (1) longitudinal reinforcement layout, (2) shear stress demand, (3) high-strength materials, and (4) aspect ratio on the sliding shear behavior of squat walls. All specimens were tested under lateral displacement reversals. Test results indicate that the maximum strength of all test specimens with an aspect ratio of 0.5 was primarily associated with, or limited by, sliding shear at the wall base. For specimens with an aspect ratio of 0.5 and negligible axial load, the presence of special boundary elements did not have an apparent influence on wall behavior. Increasing the amount of longitudinal reinforcement, which also increased wall strength, resulted in less sliding deformation before 1.0% drift ratio. Beyond 1.0% drift ratio, all specimens with an aspect ratio of 0.5 exhibited a substantial pinching of the hysteretic response, where sliding along the wall base accounted for 80% of the overall deformation. Specimens with high-strength materials exhibited less deformation capacity than other specimens due to bar fracture at the wall base. As the aspect ratio increased to 1.0, the relative contribution of sliding deformation to overall drift decreased substantially to less than 20% of overall deformation. Based on the response characteristics of the test specimens, a sliding shear strength model for walls with negligible axial load is proposed. A database consisting of test results from fifty-five specimens (including five from this study) was developed to verify the proposed strength model.
DOI:
10.14359/51749493
24-395
November 12, 2025
Yail J. Kim and Ali Alatify
This paper presents the interface shear between ordinary concrete and ultra-high-performance concrete (UHPC) connected with glass fiber-reinforced polymer (GFRP) reinforcing bars. Following ancillary tests on reinforcing bar fracture under in-plane shear loading, concrete-reinforcing bar assemblies are loaded to examine capacities and failure modes as influenced by the size, spacing, and number of the reinforcing bars. While the shear behavior of bare reinforcing bars is primarily governed by the orientation of the load-resisting axes in the glass fibers and their volume, the size and spacing of the reinforcement largely control the interface capacity by affecting the load-transfer mechanism from the reinforcing bar to the concrete. The degree of stress distribution affects the load-displacement response of the interface, which is characterized in terms of quasi-steady, kinetic, and failure regions. The primary failure modes of the interface comprise rebar rupture and concrete splitting. The formation of cracks between the ordinary concrete and UHPC results from interfacial deformations, leading to spalling damage when applied loads exceed service levels. An analytical model is formulated alongside an optimization technique. The capacities of the interface in relation to the reinforcing bar rupture and concrete splitting failure modes are predicted. Furthermore, a machine learning algorithm is used to define a failure envelope and propose practice guidelines through parametric investigations.
10.14359/51749317
24-432
October 8, 2025
Sher Khan, Muhammad Masood Rafi, Humberto Varum and Bruno Briseghella
Materials Journal
Corrosion in reinforcing steel bars is a critical factor influencing the durability and structural performance of reinforced concrete structures. This paper investigates the effects of corrosion on the mechanical properties of thermo-mechanically treated steel bars. The study parameters included bar diameter, corrosion technique, and varying corrosion levels (CLs). The impressed current technique was used to accelerate corrosion. Load-displacement data from uniaxial tensile tests were analyzed to determine stress-strain relationships of corroded bars. The results showed that the mechanical properties of the bars were unaffected by diameter or corrosion technique. However, a consistent reduction in both nominal yield strength and ultimate strength was observed with increasing CLs, while the elastic modulus remained unchanged. The strength factors for yield strength and ultimate strengths of the corroded bars varied in the range of 0.0013 to 0.015 and 0.0032 to 0.012, respectively, which were higher than reported in the literature. The fracture strain of the bars decreased at higher CLs. Predictive models were developed to estimate the residual mechanical properties, which are crucial for defining the constitutive relations needed to determine analytical stress-strain behavior. Analytical methods for determining these constitutive relations were also proposed, showing a good correlation with the experimental stress-strain curves.
10.14359/51749252
24-442
September 11, 2025
This paper presents an experimental study on the residual bond of glass fiber-reinforced polymer (GFRP) rebars embedded in ultra-high-performance concrete (UHPC) subjected to elevated temperatures, including a comparison with ordinary concrete. Based on the range of thermal loading from 25°C (77°F) to 300o°C (572o°F), material and push-out tests are conducted to examine the temperature-dependent properties of the constituents and the behavior of the interface. Also performed are chemical and radiometric analyses. The average specific heat and thermal conductivity of UHPC are 12.1% and 6.1% higher than those of ordinary concrete, respectively. The temperature-induced reduction of density in these mixtures ranges between 5.4% and 6.2% at 300o°C (572o°F). Thermal damage to GFRP, in the context of microcracking, is observed after exposure to 150°C (302°F). Fourier transform infrared spectroscopy reveals prominent wavenumbers at 668 cm-1 (263 in.-1) and 2,360 cm-1 (929 in.-1), related to the bond between the fibers and resin in the rebars, while spectroradiometry characterizes the thermal degradation of GFRP through diminished reflectivity in conjunction with the peak wavelength positions of 584 nm (2,299×10-8 in.) and 1,871 nm (7,366×10-8 in.). The linearly ascending bond-slip response of the interface alters after reaching the maximum shear stresses, leading to gradual and abrupt declines for the ordinary concrete and UHPC, respectively. The failure mode of the ordinary concrete interface is temperature-sensitive; however, spalling in the bonded region is consistently noticed in the UHPC interface. The fracture energy of the interface with UHPC exceeds that of the interface with the ordinary concrete beyond 150o°C (302o°F). Design recommendations are provided for estimating reductions in the residual bond of the GFRP system exposed to elevated temperatures.
10.14359/51749172
23-114
September 10, 2025
Mosleh Tohidi and Ali Bahadori-Jahromi
Although the issue of progressive collapse has been significantly studied within the broader field of structural engineering, the literature on the analysis and design of connections in precast concrete cross-wall buildings is rather limited. This study aims to investigate the progressive collapse behaviour of a typical precast floor-to-floor system, considering the pull-out failure mode of the deformed bar into grouted keyways of slabs at the joints. To do so, the pull-out behaviour of deformed bars in grouted keyways of the connections was first experimentally studied. Subsequently, by integrating the pull-out force-displacement data with findings from full-scale floor-to-floor experiments, an approximate analytical approach was formulated and validated to estimate the resistance to progressive collapse. The findings reveal that the floor-to-floor system, when subjected to the pull-out failure mode following the removal of a wall support, demonstrates a secondary peak strength and considerable ductility in contrast to the bar fracture failure mode.
10.14359/51749161
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer