International Concrete Abstracts Portal

Showing 1-5 of 3191 Abstracts search results

Document: 

23-259

Date: 

April 25, 2025

Author(s):

Han-Se Moon, Kwang-Won Jo, Hyeon-Jong Hwang, Chang-Soo Kim, Jae-Hong Jeong, Chan-Kyu Park, Hong-Gun Park

Publication:

Structural Journal

Abstract:

Slag-based zero-cement concrete (ZC) of high strength (60 MPa [8.70 ksi]) was developed as an eco-friendly construction material. In the present study, to investigate the structural behavior of precast columns using ZC, cyclic loading tests were performed for five column specimens with reinforcement details of ordinary moment frames. Longitudinal reinforcement was connected by sleeve splices at the precast column–footing joint. The test parameters included the concrete type (Portland cement-based normal concrete [NC] vs. ZC), construction method (monolithic vs. precast), longitudinal reinforcement ratio, and sleeve size. The test results showed that the structural performance (failure mode, strength, stiffness, energy dissipation, and deformation capacity) of the precast ZC columns was comparable to that of the monolithic NC and precast NC columns, and the tested strengths agreed with the nominal strengths calculated by ACI 318-19. These results indicate that current design codes for cementitious materials and sleeve splice of longitudinal reinforcement are applicable to the design of precast ZC columns.

DOI:

10.14359/51746791


Document: 

24-041

Date: 

April 25, 2025

Author(s):

Gustavo J. Parra-Montesinos and Jacob Zeuske

Publication:

Structural Journal

Abstract:

Two large-scale beam-column connections with beam longitudinal headed bars were tested to evaluate their susceptibility to breakout failures. The specimens were designed following the strength and transverse reinforcement detailing provisions in Chapter 15 of ACI 318-19. The variable investigated was the headed bar embedment length, which was determined based on either Chapter 25 of ACI 318-19 or recent research at the University of Kansas, the latter leading to a 22% shorter embedment length. Both specimens exhibited beam flexural yielding, but the specimen with shorter bar embedment length experienced significantly more connection damage followed by a concrete breakout failure. Based on the limited test results, it is recommended that nominal joint shear strength be calculated based on a joint effective depth equal to the headed bar embedment length and a shear stress of 1.0λ√(fc' ) (MPa) [12λ√(fc' ) (psi)]. A method for calculating headed bar group anchorage strength in exterior beam-column connections is proposed, which led to reasonable and conservative strength estimates in the test specimens.

DOI:

10.14359/51746793


Document: 

24-101

Date: 

April 9, 2025

Author(s):

Selva Ganesa Moorthi A. and G. Appa Rao

Publication:

Structural Journal

Abstract:

This paper discusses the seismic performance of precast coupled structural walls with the influence of connections and their location. Full-scale quasi-static tests were conducted on the coupled structural walls by varying the number of connections. The test results show that the number of connections and their position along the height of the coupled wall significantly influence the lateral strength, stiffness, energy dissipation, and failure modes. Walls with two connections seem to improve the strength and hysteretic response, exhibiting superior cyclic performance. Increasing the number of connections improves the initial stiffness to a certain extent, but the designs are expensive. Walls with connections closer to lateral loading lines exhibit vulnerability, requiring design to optimize energy dissipation and crack control. Connections with over-strength may need to be avoided as they may not increase the energy dissipation under earthquake loading. The outcomes of the study help in designing precast systems with better seismic resilience, good ductility, and ease of replacement after an earthquake hits the system.

DOI:

10.14359/51746756


Document: 

24-118

Date: 

April 9, 2025

Author(s):

Adham Abu-Abaileh and Matthew Soltani

Publication:

Structural Journal

Abstract:

This study employs advanced nonlinear finite element modeling to investigate Interface Shear Transfer (IST) behavior in RC connections, a crucial factor for bridge durability and safety. The research examines shear transfer mechanisms at the interface between precast girders and cast-in-place deck segments through three experimental methods: beam, push-off, and Iosipescu four-point bending tests. FE simulations evaluated stress distributions, IST capacity, and failure mechanisms. Validation against experimental data shows that the Iosipescu test provides the most accurate representation of IST behavior, exhibiting a stress distribution error margin of only 1%, closely aligning with observed failure patterns. In contrast, the push-off test showed a 30% deviation from empirical data, indicating reduced accuracy in predicting real-world IST behavior. These findings highlight the importance of incorporating the Iosipescu test into IST evaluation protocols, as its greater precision enhances design methodologies for concrete bridges, reduces structural failure risks, and informs future updates to IST-related codes.

DOI:

10.14359/51746757


Document: 

24-180

Date: 

April 9, 2025

Author(s):

Mario E. Rodriguez and José I. Restrepo

Publication:

Structural Journal

Abstract:

Linear structural analysis is the method of choice commonly used by practicing engineers to support the seismic design of a structure. The structural models are developed in commercial software and incorporate stiffness modifiers, which lower the stiffness of the members, in recognition of all the sources of flexibility that occur upon cracking of the concrete. This paper describes a mechanics-based model to compute the stiffness modifiers for columns with a circular cross-section. The mechanics-based model accounts for five modes of deformation observed. Calibration of this model was performed with a database of tests reported in the literature on twenty-two circular-section columns that exhibited ductile response. The paper ends by describing a simplified method for use in design. The mechanics-based model and the design method yield an effective column lateral stiffness that closely aligns with the values obtained from the column database.

DOI:

10.14359/51746758


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer