ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 1444 Abstracts search results
Document:
24-250
Date:
June 11, 2025
Author(s):
Pratik Gujar, Beng Wei Chong, Precious Aduwenye, Xijun Shi* and Zachary C. Grasley
Publication:
Materials Journal
Abstract:
This study investigates the feasibility of utilizing a hybrid combination of recycled steel fibers (RSF) obtained from scrap tires and manufactured steel fibers (MSF) in concrete developed for pavement overlay applications. A total of five concrete mixtures with different combinations of MSF and RSF, along with a reference concrete mixture, were studied to evaluate fresh and mechanical properties. The experimental findings demonstrate that the concretes incorporating a hybrid combination of RSF with hooked-end MSF exhibit comparable or higher splitting tensile strength, flexural strength, and residual flexural strength to that of concretes containing only hooked-end MSF, straight MSF, and RSF. This enhanced mechanical performance can be ascribed to the multiscale fiber reinforcement effect that controls different scales (micro to macro) of cracking, thereby providing higher resistance to crack propagation. The concretes containing only RSF show lower splitting tensile strength, flexural strength, and residual flexural strength compared to concrete solely reinforced with straight MSF or other steel fiber-reinforced concrete (SFRC) mixtures due to the presence of various impurities in the RSF, such as thick steel wires, residual rubber, and tire textiles. Interestingly, blending RSF with hooked-end MSF overcomes these limitations, enhancing tensile strength, flexural strength, and residual flexural strength, while significantly reducing costs and promoting sustainability. Lastly, the findings from the pavement overlay design suggest that utilizing a hybrid combination of RSF with hooked-end MSF can reduce the design thickness of bonded concrete overlays by 50% compared to plain concrete without fiber reinforcement, making it a practical and efficient solution.
DOI:
10.14359/51747871
24-055
May 14, 2025
Sourav Chakraborty and Kolluru V. L. Subramaniam
Structural Journal
The reduction in the shear capacity using recycled coarse aggregate made from crushed concrete is evaluated in terms of tensile cracking and fracture surface characteristics. An experimental investigation is presented into the fracture and flexure-shear behaviors of recycled aggregate concrete (RAC). Replacing natural aggregate in concrete proportioned for 30 MPa compressive strength with recycled coarse aggregate results in lower compressive and tensile strengths. The tensile fracture surface characteristics vary between RAC and natural aggregate concrete (NAC). While the surface area created in the tensile fracture of RAC is larger than that of NAC, the fracture surface profile in RAC has a smaller roughness than that of NAC. In the flexure-shear response of reinforced concrete beams, the dilatancy determined from the slip and crack opening displacements measured across the shear crack is smaller in RAC than NAC. The failure in the reinforced beam is due to the frictional stress transfer loss across the primary shear crack. There is a larger decrease in the shear capacity with the use of RAC than indicated by the reduction in compressive strength. The reduced shear capacity of reinforced RAC is due to the combined influences of reduced tensile strength and crack surface roughness. The design provisions require calibration for crack surface roughness when using RAC in structural applications.
10.14359/51746815
24-061
May 8, 2025
Tianyu Xiao and Sen Du
Engineered cementitious composites (ECC), a prominent innovation in the realm of concrete materials in recent years, contain a substantial amount of cement in their composition, thereby resulting in a significant environmental impact. To enhance the environmental sustainability of ECC, it is plausible to substitute a large portion of cement in the composition with fly ash, a by-product of coal-fired power plants. In recent years, there has been increased research in ECC containing high-volume fly ash (HVFA) binders and its wider application in construction practices. In this particular context, it becomes imperative to review the role of the HVFA binder in ECC. This review first examines the effects of incorporating an HVFA binder in ECC on fiber dispersion and fiber/matrix interface behavior. Additionally, mechanical properties, including the compressive strength, tensile behavior, and cracking behavior under loading, as well as durability performances of HVFA-based ECC under various exposure conditions, are explored. At last, the review summarizes the research needs pertaining to HVFA-based ECC, providing valuable guidance for future endeavors in this field.
10.14359/51746805
23-187
May 1, 2025
Muhammad Saad Khan, Muhammad Masood Rafi, and Humberto Varum
Volume:
122
Issue:
3
This paper presents experimental testing results on full-scale reinforced concrete (RC) column specimens subjected to quasi-static cyclic loading. Two types of lap-spliced steel reinforcing bars were used: hot-rolled thermomechanically treated (TMT) and coldtwisted ribbed bars. The specimens were tested under varying axial load levels: CD-10 and CD-20 specimens, reinforced with TMT bars, were loaded at 10% and 20% of the column’s axial load capacity, respectively, while the CT-20 specimen, reinforced with cold-twisted ribbed bars, was axially loaded at 20% capacity. In contrast to the cold-twisted bars, the TMT bars’ yield strength exceeded the specified strength by 38%, leading to an underestimation of the required reinforcing bar splice length and significantly impacting cracking patterns and curvature near the dowel end. The CD-20 and CT-20 specimens showed comparable lateral load capacity and initial stiffness, substantially higher than the CD-10 specimen. The CT-20 specimen exhibited symmetrical hysteretic behavior, indicating a consistent response to reversed cyclic loading, with (on average) 10% and 45% higher peak and ultimate displacement capacity than CD-10 and CD-20, respectively, and 45% higher displacement ductility capacity. Notably, only the CT-20 specimen met the acceptance criteria for structural testing described by the code of practice, while the lower ductility and ultimate rotation capacity of CD-10 and CD-20 resulted from the unintended increase in reinforcing bar yield strength.
10.14359/51744392
22-207
Laura N. Lowes, Ray Yu, Dawn E. Lehman, and Scott Campbell
Reinforced concrete walls are commonly used in low- and mid-rise construction because they provide high strength, stiffness, and durability. In regions of low and moderate seismicity, ACI 318 Code requirements for minimum reinforcement ratio and maximum reinforcement spacing typically control over strength-based requirements. However, these requirements are not well-supported by research. The current study investigates requirements for the amount and spacing of reinforcement using experimentally validated nonlinear finite element modeling. For lightly reinforced concrete walls subjected to out-of-plane loading: 1) peak strength is controlled by concrete cracking; and 2) residual strength depends on the number of curtains of steel. Walls with very low steel-fiber dosages were also studied. Results show that fiber, rather than discrete bars, provides the most benefit to wall strength, with fiber-reinforced concrete walls achieving peak strengths more than twice that of identically reinforced concrete walls.
10.14359/51745465
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer