ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 363 Abstracts search results
Document:
24-098
Date:
September 10, 2025
Author(s):
Zoi G. Ralli, Stavroula J. Pantazopoulou, and Ismail Mohammed
Publication:
Structural Journal
Abstract:
Inverse analysis methods proposed by current standards for extracting the tensile properties of tension-hardening cementitious materials from indirect tension tests (e.g., flexural prism tests) are considered either cumbersome and can only be performed by skilled professionals 1,2 or apply to certain configurations and specimen geometries. Significant discrepancies are reported between the results of direct tension tests (DTT or DT tests) and inverse analysis methods. This has eroded confidence in flexural tests as a method of characterization of tension-hardening Ultra-High Performance Concrete (UHPC) and has motivated its abandonment in favor of DT testing. Additional concerns are size sensitivity, variability, and lack of robustness in the results of some methods. However, DT tests are even more difficult to conduct, and results are marked by notable scatter. This is why some codes allow for bending tests at least for quality control of UHPC. To address the limitations of the bending tests in providing an easy and quick method for reliable estimation of the tensile characteristic properties of UHPC, a new practical method is developed in this paper, based on a Forward Analysis (FA) of third-point bending tests. A unique aspect of the approach is that it considers the nonlinear unloading that occurs in the shear spans of the prism after strain localization in the critical region. The method was used to derive charts for direct estimation of the tensile properties from quality control bending tests, for the commonly used flexural specimen forms and material types. The goal of the study is to provide a practical alternative in the characterization of tension-hardening UHPC materials. Results obtained using the proposed FA method are in good agreement with the tensile response from DT tests. However, it is noted that due to the presence of a strain gradient in bending tests and the larger strain gauge lengths employed in some DT tests, the strain values at localization from DT tests tend to be more conservative.
DOI:
10.14359/51749166
24-325
September 1, 2025
Giwan Noh, Uksun Kim, Myoungsu Shin, Woo-Young Lim, and Thomas H.-K. Kang
Volume:
122
Issue:
5
Geopolymer, an inorganic polymer material, has recently gained attention as an eco-friendly alternative to portland cement. Numerous studies have explored the potential of geopolymer as a primary structural material. This study aimed to examine the efficacy of geopolymer composites as repairing and strengthening materials rather than as structural materials. Data from 782 bond strength tests and 164 structural tests were collected and analyzed, including those on beams, beam-column connections, and walls. The analysis focused on critical factors affecting the bond strength of geopolymer composites with conventional cementitious concrete, and the structural behaviors of reinforced concrete members repaired or strengthened with these composites. The findings highlight the potential of geopolymer composites for enhancing the resilience and toughness of existing damaged or undamaged concrete structures. Additionally, they offer valuable insights into the key considerations for using geopolymer composites as repair or strengthening materials, providing a useful reference for future research in this field.
10.14359/51746719
23-259
H.-S. Moon, K.-W. Jo, H.-J. Hwang, C.-S. Kim, J.-H. Jeong, C.-K. Park, and H.-G. Park
Slag-based zero-cement concrete (ZC) of high strength (60 MPa [8.70 ksi]) was developed as an eco-friendly construction material. In the present study, to investigate the structural behavior of precast columns using ZC, cyclic loading tests were performed for five column specimens with reinforcement details of ordinary moment frames. Longitudinal reinforcement was connected by sleeve splices at the precast column-footing joint. The test parameters included the concrete type (portland cement-based normal concrete [NC] versus ZC), construction method (monolithic versus precast), longitudinal reinforcement ratio, and sleeve size. The test results showed that the structural performance (failure mode, strength, stiffness, energy dissipation, and deformation capacity) of the precast ZC columns was comparable to that of the monolithic NC and precast NC columns, and the tested strengths agreed with the nominal strengths calculated by ACI 318-19. These results indicate that current design codes for cementitious materials and sleeve splice of longitudinal reinforcement are applicable to the design of precast ZC columns.
10.14359/51746791
24-066
August 19, 2025
Moetaz El-Hawary, Ezzat Abdelsalam
Materials Journal
As global demand for concrete has been forecasted to keep rising, one of the approaches towards more sustainable constructions is the adoption of mix designs replacing conventional ones. The current study contains a comparison between concrete mixes that constitutes only Ordinary Portland Cement (OPC) and mixes incorporating 25% OPC with a 75% replacement by supplementary cementitious materials (SCM). The major experimental hypothesis circles around investigating whether it is effective to use thermal treatment under moderately elevated temperatures to enhance the physical and mechanical properties of concrete. Comparisons were performed using mechanical tests such as: compressive strength, tensile strength, flexural strength, and through several non-destructive physical experiments as well as microstructural investigation using SEM and EDS. In conclusion, the experimental results have shown a mostly positive influence observing significant enhancements after thermal treatment. However, treated concrete mixes that constitute only OPC seem to excel in overall performance compared to those incorporating SCM.
10.14359/51749121
24-385
Amanda Lewis, Kevin Johnson, Abla Zayed, and Gray Mullins
The term “mass concrete” characterizes a specific concrete condition that typically requires unique considerations to mitigate extreme temperature effects on a structure. Mass concrete has historically been defined by the physical dimensions of a massive concrete element with the intent of identifying when differential temperatures may induce early-onset cracking, leading to reduced service life. More recently, in addition to differential temperature considerations, extreme upper temperature limits have been imposed by the American Concrete Institute to prevent long-term concrete degradation. Studies dating back to 2007 show shafts as small as 48 in. (1.2 m) in diameter can exceed both differential and peak temperature limits; in 2020, augered cast-in-place piles as small as 30 in. (0.76 m) in diameter exceeded one or both limits. This suggests the term “mass concrete” is misleading when considering today’s high-early-strength or high-performance mix designs. This study applies numerical modeling coupled with field measurements to investigate the effects of concrete mix design, drilled shaft diameter, and environmental conditions on heat energy production and temperature. Further, the outcome of this study focuses on developing criteria that combine the effects of both size and cementitious material content to determine whether unsafe temperature conditions may arise for a given drilled shaft design.
10.14359/51749125
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer