ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 63 Abstracts search results
Document:
25-044
Date:
January 21, 2026
Author(s):
Siham Al Shanti, Daniel Heras Murcia, Elena Kalinina, and Mahmoud M. Reda Taha
Publication:
Materials Journal
Abstract:
The determination of the static coefficient of friction between steel and concrete is essential for the design and safety of structures, particularly in systems operating under low axial stresses, such as foundation slabs supporting waste storage casks. In such applications, sliding resistance and shear transfer at the steel–concrete interface play a critical role in ensuring stability and overall structural performance. Inadequate friction at this interface can lead to sliding, reducing the structure’s capacity to resist lateral forces and potentially resulting in serviceability or safety concerns. This study presents an innovative approach to evaluate the static coefficient of friction between steel, prepared to a specific steel surface roughness level (SSPC-SP 6), and concrete with varying surface roughness profiles, including light sandblast, light-to-medium sandblast, medium bush hammer, and heavy sandblast finishes. Tests were performed under low normal stresses (18, 33, and 50 kPa) and shear displacement rates (3, 5, 7, and 9 mm/s). A custom test setup was developed to apply controlled displacement to a concrete block while measuring the horizontal force required to initiate sliding against the steel plate. The results indicate that the static coefficient of friction across all concrete surface roughness levels ranges from 0.68 to 0.75, with a mean value of 0.72. Statistical analysis at a 95% confidence level reveals that variations in concrete surface roughness, shear displacement rates, and applied normal stresses do not produce significant differences in the static coefficient of friction. Consequently, utilizing concrete with light sandblast surface preparation in the field is sufficient to achieve a static coefficient of friction comparable to aggressive surface roughness profiles. These findings simplify construction practices while ensuring reliable shear transfer and sliding resistance at steel-concrete interfaces in low axial stress applications.
DOI:
10.14359/51749501
20-185
July 1, 2022
Sampa Akter and Tahsin Reza Hossain
Structural Journal
Volume:
119
Issue:
4
Expensive mitigation measures are generally adapted for structures that are vulnerable to blast loading. But literature shows that a building with seismic design and detailing has some inherent capacity to resist blast loading. As such, a nonlinear three-dimensional finite element model is developed using finite element software ABAQUS to study the performance of a reinforced concrete (RC) column designed and detailed with three levels of seismic detailing under blast loading as per Bangladesh National Building Code 2020, which is similar to ACI 318-08. The vulnerability of damage due to blasting is determined according to the residual capacity of the column. The nonlinear behavior of concrete is simulated in ABAQUS using the concrete damage plasticity (CDP) model. Blast pressure is applied on the front face of the column using the built-in CONWEP module. The results show that closely spaced lateral reinforcements significantly reduce the damage and blast vulnerability of the RC column under blast loading. In addition, favorable effects on the blast resistance of the RC column are found with a lower charge mass, larger size of columns, increased height of the blast, and higher axial load ratio.
10.14359/51734646
21-366
May 1, 2022
Sara Seyedfarizani, Basem H. AbdelAleem, and Assem A. A. Hassan
3
This study aimed to investigate the effect of different curing conditions/temperatures on the compressive strength, flexural strength (FS), modulus of elasticity (ME), and abrasion resistance of concrete developed with different mixture compositions. The studied parameters included different water-binder ratios (w/b) (0.4 and 0.55), different coarse-to-fine aggregate ratios (C/F) (0.7 and 1.2), addition of steel fibers (SFs), and different supplementary cementitious materials (SCMs) (metakaolin [MK] and silica fume [SLF]). The developed mixtures were cured at four different curing conditions: moist curing (C1); air curing (C2); and cold curing, including +5°C curing (C3) and –10°C curing conditions (C4). The results indicated that the effect of curing concrete samples at cold curing conditions was more pronounced on FS results compared to all other mechanical properties results, in which the FS reduced by 23% and 41% at +5°C and –10°C curing conditions, respectively, compared to at the moist-curing condition. Despite the considerable enhancement in the mechanical properties and abrasion resistance when SFs or SCMs were used in the mixtures, cold curing of mixtures with SCMs or SFs significantly reduced this enhancement. The results also revealed that the rotating-cutter test results of the mixture with SFs were more affected by cold curing conditions than the sandblasting test results.
10.14359/51734619
20-528
September 1, 2021
M. C. de Moraes, I. S. Buth, C. Angulski da Luz, E. A. Langaro, and M. H. F. Medeiros
118
5
Recently, alkali-activated cement (AAC) has been studied to partially replace portland cement (PC) to reduce the environmental impact caused by civil construction and the cement industry. However, with regard to durability, few studies have addressed the behavior of AAC. This study aimed to evaluate the performance of AAC made from blast-furnace slag with contents of 4 and 5% sodium hydroxide as an activator (Na2Oeq of 3.72% and 4.42%, respectively) when subjected to alkali-aggregate reaction (AAR). Length variation tests were carried out on mortar bars immersed in NaOH solution (1 N of NaOH, T = 80°C [176°F]) and on concrete bars (T = 60°C [140°F], RH = 95%); compressive strengths tests and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analyses were also made. Two types of PC were used as a comparison. The results showed good behavior of the AAC in relation to the AAR, with expansions lower than those established by the norm (34% of the limit) and without the finding of losses of mechanical resistance or structural integrity. The alkaline activator content had a small influence on the behavior of the AACs, in which the lowest amount of NaOH (4%) showed fewer expansions (only 15% of the limit established by the norm). Even for the highest activator content (5%), the results were good and comparable to those of PC with pozzolans, which is recommended for the inhibition of AAR.
10.14359/51732937
19-455
March 1, 2021
Mohamed M. Sadek and Assem A. A. Hassan
2
This study evaluated the abrasion resistance for a number of lightweight self-consolidating concrete (LWSCC) incorporating coarse and fine lightweight expanded slate aggregates (LC or LF, respectively). The study also investigated the abrasion resistance before and after exposure to freezing-and-thawing cycles in the presence of deicing salt. The investigated parameters included different volumes of LC and LF aggregates, three binder contents (500, 550, and 600 kg/m3 [31.2, 34.3, and 37.5 lb/ft3]), and different types of concrete (LWSCC, lightweight vibrated concrete, and normal-weight self-consolidating concrete). Increasing the percentage of expanded slate aggregate decreased the abrasion resistance. Mixtures with LF showed higher strength-per-weight ratio and higher abrasion and salt-scaling resistance compared to mixtures with LC. Samples exposed to abrasion before salt scaling had higher mass losses due to salt scaling with an average of 26.8% compared to non-abraded ones. Higher mass loss was also observed in mixtures exposed to abrasion after the exposure to salt scaling with an average of 26% and 43.3% in the rotating-cutter and sandblasting abrasion tests, respectively.
10.14359/51729325
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer