International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 487 Abstracts search results

Document: 

24-380

Date: 

November 6, 2025

Author(s):

Tae-Sung Eom, Seung-Jae Lee, and Insung Kim

Publication:

Structural Journal

Abstract:

In this study, the behavior of diaphragm-to-wall connections with collector reinforcement and construction joints was investigated. Four slab-to-wall connection specimens were tested under cyclic loading. Diaphragm connection details, such as shear friction reinforcement (i.e., slab dowel bars anchored by 90-degree hooks within the wall) and the use of spandrel beams as collectors, were considered as test variables. When fabricating the specimens, concrete was consecutively cast for the wall and slab, and construction joints were placed on the sides of the wall and spandrel beams. The tests showed that the diaphragm connections exhibited the typical ductile behavior characterized by the robust initial stiffness and subsequent post-yield plastic behavior. Before concrete failure on the front of the wall, the load transfer from the diaphragm to the wall was governed by a nodal zone action; then, the subsequent connection behavior was dominated by shear friction as sliding failure occurred on the side of the wall along the slab construction joints. The diaphragm-to-wall connection strengths were evaluated using the strut-and-tie model and shear friction theory. The calculated strengths were in good agreement with the test strengths. Based on the investigation results, design considerations of the diaphragm-to-wall connection were proposed.

DOI:

10.14359/51749304


Document: 

24-413

Date: 

November 6, 2025

Author(s):

Yail J. Kim and Thi Ha

Publication:

Structural Journal

Abstract:

This paper presents the behavior of anchorage zones, also known as end zones, with discrete reinforcing bars and continuous meshes. To examine the implications of various reinforcing schemes on the capacity, cracking, and failure of end zones, 50 block specimens are loaded, and their responses are analyzed. Test parameters include the types of reinforcing bar materials (steel and glass fiber-reinforced polymer, (GFRP)) and the configurations of the reinforcing bars and steel meshes (single and multiple placements). In terms of load-carrying capacity, the specimens embedded with the GFRP rebars outperform those with the steel reinforcing bars and meshes by 14.0%. The post-peak load drop of the blocks with the steel and GFRP reinforcing bars is analogous due to distributed axial stresses in the unreinforced concrete region, differing from the abrupt drop observed in the specimens with the steel meshes that intersect the concrete in orthogonal directions. While concrete splitting originates from local tension generated near the axial compression, the location of cracking is dominated by the path of stress trajectories related to the number of reinforcing bars, which is not recognized in the case of the meshed specimens. The pattern of the isostatic lines of compression clarifies the development of bursting forces that cause cracking in the concrete. A two-stage analytical model is formulated to predict the magnitude of bursting forces and determine the effects of several parameters on the response of the end zones. The applicability of existing design expressions is assessed, and the need for follow-up research is delineated.

DOI:

10.14359/51749305


Document: 

24-398

Date: 

September 11, 2025

Author(s):

Dorian Borosnyoi-Crawley

Publication:

Structural Journal

Abstract:

It can be demonstrated that performance-based seismic design of post-installed anchors in accordance with ACI 318 is not possible by using the anchor qualification information provided by ACI 355. The current state-of-the-art anchor qualification does not provide capacities that reflect actual earthquake responses in seismic design scenarios. This paper provides a comprehensive analysis and highlights the gaps in the current approach. A performance-based framework is proposed as the basis of future developments in seismic design and qualification of post-installed anchors. It is demonstrated that the approach is fully transparent and provides the possibility to identify key driving parameters that need further experimental investigation. The approach acknowledges that performance-based seismic design of post-installed anchors needs an understanding of the seismic damage of the concrete-anchor system. Currently, no design tools are available to predict this damage. The proposed framework adopts the theory of the accumulated damage potential (ADP) as a damage parameter. It is demonstrated that the selected damage parameter is simple but meaningful enough to represent the seismic damage of the concrete-anchor system at the design level. Possibilities for future development of the approach is explored, and directions for the next steps are suggested. It is highlighted that a definition of a framework for realistic seismic performance objectives of post-installed anchors is needed for the development of design tools in the future. The proposed framework has great practical significance and may help fill a gap in the seismic design of post-installed anchors. Promoting a transparent framework that is driven by the needs of performance-based seismic design may help develop a feasible qualification system and replace the currently used pass-or-fail assessment approach that is not suitable to provide anchor capacities for performance-based seismic design.

DOI:

10.14359/51749169


Document: 

24-150

Date: 

September 1, 2025

Author(s):

Sumedh Sharma, Sriram Aaleti, and Pinar Okumus

Publication:

Structural Journal

Volume:

122

Issue:

5

Abstract:

This study introduces a new anchorage strategy using ultra-high-performance concrete (UHPC) to attach unbonded post- tensioning (PT) strands to existing foundations. This solution complements a seismic retrofit scheme investigated by the authors, which transforms nonductile cast-in-place reinforced concrete (RC) shear walls into unbonded PT rocking shear walls following concepts of selective weakening and self-centering. In the proposed PT anchorage scheme, mild steel reinforcements are inserted through the shear wall thickness and into the foundation. Subsequently, UHPC is cast around the wall base, forming a vertical extension connected to the foundation, which is used to anchor the unbonded PT strands. The feasibility and performance of the anchorage scheme was investigated through a combination of laboratory testing and numerical simulations. Pullout testing on four scaled-down anchorage specimens was conducted in the laboratory. Hairline cracks were observed in the UHPC during testing. Additionally, three-dimensional (3-D) finite element (FE) models were created, validated, and used to study the performance of the proposed anchorage scheme under lateral loading. The simulation results support the effectiveness of the proposed anchorage strategy.

DOI:

10.14359/51746817


Document: 

22-355

Date: 

September 1, 2025

Author(s):

Dejun Liu, Xiaoyun Yao, Qingqing Dai, Cong Tian, and Jiangwen Zheng

Publication:

Structural Journal

Volume:

122

Issue:

5

Abstract:

Inner surface reinforcement is one of the most widely adopted techniques for upgrading or strengthening shield tunnels. An important failure mode in this method is the debonding of the thin plates from the segments, resulting in less reinforcement effect than expected. A shield tunnel lining is a discontinuous curved structure formed by connecting segments with bolts, and its structural form and internal force state are essentially different from reinforced concrete beams. However, there are few reports on the evolution process of debonding failure of similar structures. Therefore, to develop a thorough understanding of the debonding failure, a three-dimensional refined numerical model for a shield tunnel strengthened by a thin plate at the inner surface based on the mixed-mode cohesive method was proposed. The validity and rationality of the model were corroborated by a full-scale experiment. Then, the model was applied to other inner surface reinforcement schemes commonly used in practice to explore the debonding mechanism of the adhesive layer. Finally, anti-debonding measures were proposed, and their effectiveness was elucidated by numerical analysis. The results show that the proposed numerical model can accurately predict the failure process of the adhesive interface of the shield tunnel strengthened by a thin plate. There are obvious interfacial stress concentrations at the joints and the plate ends, which are the essential reasons for the debonding failure initiating from those places. Anchoring the thin plate only at the plate ends and joints can significantly and sufficiently increase the debonding load. Therefore, it is not necessary to add anchoring measures elsewhere.

DOI:

10.14359/51746813


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer