ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 511 Abstracts search results
Document:
24-461
Date:
October 20, 2025
Author(s):
Hinoel Ehrenbring, Fernanda Pacheco, Roberto Christ, and Bernardo Tutikian
Publication:
Materials Journal
Abstract:
This study aimed to evaluate the effect of isolated silica fume (SF) and SF combined with three contents of crystalizing admixture (CA) in the self-healing of engineered cementitious composites (ECCs) with different polymeric fibers. Self-healing was evaluated in coupon specimens subjected to bending to produce cracking. Healing products were evaluated in the cracks within 84 days. Exposure conditions for self-healing were water-saturated (SAT) and wet-dry cycles (WD). The results showed that the composites with isolated SF presented a continuous layer of healing product covering widths of up to 100 μm. The final widths for these composites were 40 μm for different conditions. In composites with CA, the volume of product generated (gel) was considerably greater, causing it to leak out of the microcracks existing in the ECC, impairing healing. Thus, the results showed that the use of SF+CA reduced the ECC healing potential. Healing from the crystallizing admixture was spot-wise only, decreasing its healing potential. The performance of the crystallizing additive was impaired under wetting and drying conditions. Leaching was observed both under SAT and WD exposure conditions. More leaching was observed from WD, while SAT formed a more uniform product layer.
DOI:
10.14359/51749265
24-113
October 8, 2025
Muzai Feng, David Darwin, and Rouzbeh Khajehdehi
Crack densities obtained from on-site surveys of 74 bridge deck placements containing concrete mixtures with paste contents between 22.8% and 29.4% are evaluated. Twenty of the placements were constructed with a crack-reducing technology (shrinkage-reducing admixtures, internal curing, or fiber reinforcement) and 54 without; three of the decks with fiber reinforcement and nine of the decks without crack-reducing technologies involved poor construction practices. The results indicate that using a concrete mixture with a low paste content is the most effective way to reduce bridge deck cracking. Bridge decks with paste contents exceeding 27.3% had a significantly higher crack density than decks with lower paste contents. Crack-reducing technologies can play a role in reducing cracking in bridge decks, but they must be used in conjunction with a low paste content concrete and good construction practices to achieve minimal cracking in a deck. Failure to follow proper procedures to consolidate, finish, or cure concrete will result in bridge decks that exhibit increased cracking, even when low paste contents are used.
10.14359/51749246
24-437
Syed Jafar Shah Bukhari, Lynda Bouchelil, Abdullah Al-Fahim, and Mehdi Khanzadeh Moradllo
The production of Ordinary Portland Cement (OPC) is a major contributor to carbon emissions. One immediate and viable solution is the use of optimized concrete mixtures that employ a decreased quantity of cement and increased dosage of high-range water-reducing (HRWR) admixtures. This study investigates five different concrete mixtures with varying w/c (0.37 to 0.42) and reduced cement contents. The mixtures with “low cement + high dosage HRWR admixture” content had over 30% increase in mechanical strength and presented 40% lower water absorption, and 68 to 97% higher formation factor, indicating enhanced durability. The optimized concrete mixtures with reduced cement and lower w/c have a service life increase of up to 117% and a life-cycle cost reduction of 29%. The application of “low cement + high dosage HRWR admixture” mixtures can improve the sustainability of concrete mixtures by reducing cement and water contents and increasing the service life of concrete in severe environments.
10.14359/51749249
24-434
September 1, 2025
Justin Dickey, Kevin J. Folliard, and Thanos Drimalas
Volume:
122
Issue:
5
This study investigates the impact of under-sulfated cement combined with high-calcium fly ash and lignosulfonate-based admixtures in ready mixed concrete, leading to rapid stiffening and delayed setting. Using an on-board slump-monitoring system (SMS) installed on a ready mixed concrete truck, significant increases in water demand were recorded to maintain target slumps, with mixtures showing minimal slump response to water additions. Laboratory tests, including isothermal calorimetry and mortar trials, confirmed the under-sulfated cement’s inadequate sulfate levels as the cause. Optimal sulfate addition was determined through calorimetry, and adjustments with gypsum effectively remedied rapid stiffening and delayed setting. This research demonstrates that an SMS can detect undesirable combinations of cement, fly ash, and admixtures in concrete, allowing real-time corrections. It underscores the importance of optimized sulfate levels in cement, particularly when using high-calcium fly ash combined with some high-range water reducers, to achieve desired concrete performance under varying field conditions.
10.14359/51749036
24-374
July 1, 2025
N. M. Sutan, F. Amsyar Redzuan, A. R. B. A. Karim, N. M. Sa’don, Y. S. S. Hui, and C. C. Y. Jie
4
Engineered cementitious composites (ECC) represent a significantinnovation in construction materials due to their exceptionalflexibility, tensile strength, and durability, surpassing traditionalconcrete. This review systematically examines the composition,mechanical behavior, and real-world applications of ECC, with afocus on how fiber reinforcement, mineral additives, and micromechanical design improve its structural performances. The present study reports on the effects of various factors, including different types of mineral admixtures, aggregate sizes, fiber hybridization, and specimen dimensions. Key topics include ECC’s strain hardening properties, its sustainability, and its capacity to resist crack development, making it ideal for high-performance infrastructure projects. Additionally, the review discusses recentadvancements in ECC technology such as hybrid fiber reinforcementand the material’s growing use in seismic structures. The paper also addresses the primary obstacles, including high initial costs and the absence of standardized specifications, while proposing future research paths aimed at optimizing ECC’s efficiency and economic viability.
10.14359/51746811
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer