International Concrete Abstracts Portal

International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 2556 Abstracts search results

Document: 

24-378

Date: 

January 21, 2026

Author(s):

Min-Yuan Cheng, Marnie B. Giduquio, Terry Y. P. Yuen, and Rémy D. Lequesne

Publication:

Structural Journal

Abstract:

Concentrated shear deformation near the base of a squat wall, referred to herein as sliding shear, is one of the major mechanisms that can limit the strength and deformation capacity of reinforced concrete (RC) low-rise or squat walls. This paper reports tests of five large-scale RC squat wall specimens without axial load to investigate the effects of (1) longitudinal reinforcement layout, (2) shear stress demand, (3) high-strength materials, and (4) aspect ratio on the sliding shear behavior of squat walls. All specimens were tested under lateral displacement reversals. Test results indicate that the maximum strength of all test specimens with an aspect ratio of 0.5 was primarily associated with, or limited by, sliding shear at the wall base. For specimens with an aspect ratio of 0.5 and negligible axial load, the presence of special boundary elements did not have an apparent influence on wall behavior. Increasing the amount of longitudinal reinforcement, which also increased wall strength, resulted in less sliding deformation before 1.0% drift ratio. Beyond 1.0% drift ratio, all specimens with an aspect ratio of 0.5 exhibited a substantial pinching of the hysteretic response, where sliding along the wall base accounted for 80% of the overall deformation. Specimens with high-strength materials exhibited less deformation capacity than other specimens due to bar fracture at the wall base. As the aspect ratio increased to 1.0, the relative contribution of sliding deformation to overall drift decreased substantially to less than 20% of overall deformation. Based on the response characteristics of the test specimens, a sliding shear strength model for walls with negligible axial load is proposed. A database consisting of test results from fifty-five specimens (including five from this study) was developed to verify the proposed strength model.

DOI:

10.14359/51749493


Document: 

25-087

Date: 

January 21, 2026

Author(s):

Nominal Flexural Strength of Concrete Members Prestressed with Hybrid Tendons

Publication:

Structural Journal

Abstract:

The calculation of the nominal flexural strength of concrete members prestressed with hybrid (i.e., a combination of bonded and unbonded (steel and/or carbon fiber reinforced polymer (CFRP)) tendons is dependent on determining the stress in the unbonded prestressed reinforcement. Current provisions in the ACI CODE-318-25 are only applicable to members with either unbonded or bonded steel tendons. Additionally, while ACI PRC-440.4R-04 is adopted for unbonded CFRP tendons, neither ACI provisions address the use of hybrid tendons. This paper presents a closed-form analytical solution for the stress at ultimate derived based on the Modified Deformation-Based Approach (MDBA) that is applicable to beams prestressed with unbonded, hybrid (steel or FRP), external with deviators or internal tendons, with and without non-prestressed reinforcement. An assessment of its accuracy and applicability in calculating the nominal flexural strength is examined using a large database of 330 beams and slabs (prestressed with steel and/or CFRP tendons) compiled from test results by the authors as well as those available in the literature. Results predicted by the proposed approach exhibited excellent accuracy when compared to those predicted using ACI CODE-318 or ACI PRC-440 stress equations. They also show that the approach is universally applicable to any combination of bonded and/or unbonded (steel and/or CFRP) tendons, span-to-depth ratio, as well as loading applications.

DOI:

10.14359/51749494


Document: 

25-106

Date: 

January 21, 2026

Author(s):

Kyu Park, Hong-Gun Park

Publication:

Structural Journal

Abstract:

A slag-based zero-cement concrete (ZC) was newly developed as an alternative, eco-friendly material to Portland cement concrete. To investigate the bond performance between ZC and steel reinforcing bars, lap splice tests were conducted for ZC beams. Fourteen beams (two cementitious normal concrete (NC) beams and twelve ZC beams) were tested at the ages of 6 days (45 MPa (6.53 ksi)) and 28 days (60 MPa (8.7 ksi)). For steel reinforcement, Grade 600 MPa (87.0 ksi) reinforcing bars were used. The test parameters included the concrete type, concrete strength (i.e., concrete age), reinforcing bar diameter, concrete cover thickness, ratio of actual lap splice length to required lap splice length, and use of stirrups. The test results showed that the performance of ZC beams was comparable to that of the counterpart NC beams in terms of moment–deflection relationship, damage mode, and reinforcing bar stress at the peak load. This result indicates that the bond performance of ZC was equivalent to that of NC with identical compressive strength. The bar development length specified in current design codes safely predicted the reinforcing bar stress of the ZC beams at failure: current design codes are applicable to the reinforcing bar development length design of ZC members.

DOI:

10.14359/51749497


Document: 

25-017

Date: 

January 21, 2026

Author(s):

Jiandong Lu, Eva O. L. Lantsoght, Yuguang Yang, and Max A.N. Hendriks

Publication:

Structural Journal

Abstract:

In the Netherlands, the existing reinforced concrete solid slab bridges require assessment for shear. Skewed slab bridges form a subset of this category. Previous experiments showed that stresses concentrate in the obtuse corner, which becomes governing for shear, and that the shear capacity in skewed members is reduced. The presented series of experiments studies the shear capacity of reinforced concrete slabs under concentrated loads. In total, five skewed slabs are tested, resulting in 15 shear experiments. The parameters that are studied are the skew angle, the reinforcement layout, the distance between the load and the support, and loading near the obtuse or acute corner. The results are compared to existing calculation methods and recommendations for determining the acting shear stress and shear capacity, which lead to reasonable results. Ultimately, the insights of these experiments can be used for the assessment of existing skewed slab bridges.

DOI:

10.14359/51749498


Document: 

24-160

Date: 

January 19, 2026

Author(s):

John E. Ardila-Gonzalez, Matías A. Hube, and Julian Carrillo

Publication:

Structural Journal

Abstract:

Controlling deflections in reinforced concrete (RC) flexural members under service loads is a serviceability requirement prescribed by design codes, such as the ACI CODE-318. Serviceability requirements are challenged by productivity requirements, such as faster construction and longer span demands, among others. This paper summarizes a parametric analysis conducted to estimate long-term deflections of one-way RC slabs. The objective of this study is to assess the effect of geometrical, concrete, and construction parameters on the long-term deflections of one-way RC slabs. The effect of these parameters on immediate deflections is also analyzed. Results of this study show that increasing the slab thickness and the area of tension reinforcement proved to be the most effective strategies for reducing both immediate and long-term deflections of one-way RC slabs. Additionally, the results of the parametric study highlight the relative influence of each studied parameter in controlling deflections.

DOI:

10.14359/51749488


12345...>>

Results Per Page 




Edit Module Settings to define Page Content Reviewer