International Concrete Abstracts Portal

Showing 1-5 of 1225 Abstracts search results

Document: 

23-205

Date: 

April 9, 2025

Author(s):

Wen-Liu Xu, Li-Cheng Wang, Yong-Qin Liang, Fei-Fan Feng

Publication:

Structural Journal

Abstract:

An approach to improve the progressive collapse resistance of conventional RC frame structure was put forth by using unbonded post-tensioning strand (UPS). Two UPSs with a straight profile are mounted at the bottom of the beam section. A static loading test was conducted on an unbonded prestressed RC (UPRC) beam-column sub-assemblage under a column removal scenario. The structural behaviors of the test specimen, such as the load-carrying capacity, failure mode, post-tensioning force of the UPSs, and rebar strain, were captured. By analyzing the results of the tested substructure, it was found that the compressive arch action (CAA) and catenary action (CTA) were sequentially mobilized in the UPRC sub-assemblage to avert its progressive collapse. The presence of UPSs could significantly improve the load-carrying capacity of conventional RC structures to defend against progressive collapse. Moreover, a high-fidelity finite element (FE) model of the test specimen was built by using the software ABAQUS. The FE model was validated by the experimental results in terms of the variation of vertical load, horizontal reaction force, and post-tensioning force of the UPSs against middle joint displacement (MJD). Finally, a theoretical model was proposed to evaluate the anti-progressive collapse capacities of UPRC sub-assemblages. It was validated by the test result as well as by the FE Models of the UPRC sub-assemblages which were calibrated using the available experimental data.

DOI:

10.14359/51746754


Document: 

24-325

Date: 

March 25, 2025

Author(s):

Giwan Noh, Uksun Kim, Myoungsu Shin, Woo-Young Lim, and Thomas H.-K. Kang

Publication:

Structural Journal

Abstract:

Geopolymer, an inorganic polymer material, has recently gained attention as an eco-friendly alternative to Portland cement. Numerous studies have explored the potential of geopolymer as a primary structural material. This study aimed to examine the efficacy of geopolymer composites as repairing and strengthening materials rather than as structural materials. We collected and analyzed data from 782 bond strength tests and 164 structural tests including those on beams, beam-column connections, and walls. The analysis focused on critical factors affecting the bond strength of geopolymer composites with conventional cementitious concrete, and the structural behaviors of reinforced concrete members repaired or strengthened with these composites. Our findings highlight the potential of geopolymer composites for enhancing the resilience and toughness of existing damaged or undamaged concrete structures. Additionally, they offer valuable insights into the key considerations for using geopolymer composites as repair or strengthening materials, providing a useful reference for future research in this field.

DOI:

10.14359/51746719


Document: 

24-130

Date: 

March 17, 2025

Author(s):

Linh Van Hong Bui, Hidehiko Sekiya, Boonchai Stitmannaithum

Publication:

Structural Journal

Abstract:

There is a need to model the complete responses of shear-critical beams strengthened with embedded through-section (ETS) fiber-reinforced polymer (FRP) bars. Here, a strategy is proposed to integrate two separate approaches, flexural‒shear deformation theory (FSDT) for element fields and a bonding-based method for ETS strengthening, into a comprehensive computation algorithm through localized behavior at the main diagonal crack. The use of force- and stress-based solutions in the algorithm that couple fixed and updated shear crack angle conditions for analyzing the shear resistance of ETS bars is investigated. The primary benefit of the proposed approach compared to single FSDT or existing models is that member performance is estimated in both the pre-peak and post-peak loading regimes in terms of load, deflection, strain, and cracking characteristics. All equations in the developed model are transparent, based on mechanics, and supported by validated empirical expressions. The rationale and precision of the proposed model are comprehensively verified based on the results obtained for 46 datasets. Extensive investigation of the different bond‒slip and concrete tension laws strengthens the insightfulness and effectiveness of the model.

DOI:

10.14359/51746674


Document: 

24-062

Date: 

March 17, 2025

Author(s):

Abhishek Kumar and G Appa Rao

Publication:

Structural Journal

Abstract:

Lap splicing of longitudinal reinforcing bars in shear walls is often encountered in practice, and the transfer of forces in lap-spliced reinforcing bars to the surrounding concrete depends on the bond strength. Buildings with shear walls during an earthquake develop plastic hinges in the shear walls, particularly where the reinforcing bars are lap-spliced. Brittle failure is commonly observed in reinforcing bar lap-spliced shear walls, which needs to be minimized by choosing the appropriate percentage of lap-spliced reinforcing bars. Therefore, it is essential to address the detailing of the lap-spliced regions of reinforced concrete (RC) shear walls. Several seismic design codes provide guidelines on lap-spliced detailing in shear walls related to its location, length of lap-splice, confinement reinforcement, and percentage of reinforcing bars to be lap-spliced. In this study, the percentage of reinforcing bars to be lap-spliced at a section is examined with staggered lap-splicing of 100, 50, and 33% of longitudinal reinforcing bars, in addition to a control RC shear wall without lap-splicing. This study tested four half-scale RC shear walls with boundary element (BE), designed as per IS 13920 and ACI 318, under quasi-static reversed cyclic loading. From the experimental study, it is observed that the staggered lap splicing of reinforcing bars nominally reduces the performance of shear walls under cyclic load in terms of the reduced flexural strength, deformation capacity, energy dissipation, and ductility of the shear walls compared to the control shear wall without lap splicing. It is also observed that the unspliced reinforcing bars do not sustain the cyclic loading in staggered lap-splice after the post-peak. Current provisions of ACI 318, EC2, and IS 13920 recommend staggered lap-splice detailing in shear walls. However, from the current study, shear walls with different percentages of staggered lap splice show that the staggered lap-splice detailing in shear walls does not improve its seismic performance.

DOI:

10.14359/51746673


Document: 

23-293

Date: 

March 1, 2025

Author(s):

T. Asheghi Mehmandari, M. Shokouhian, M. Imani, K. F. Tee, and A. Fahimifar

Publication:

Materials Journal

Volume:

122

Issue:

2

Abstract:

This study investigates the behavior of recycled steel fibers (RSFs) recovered from waste tires and industrial hooked-end steel fibers (ISF) in two single and hybrid reinforcement types with different volume content, incorporating microstructural and macrostructural analyses. Scanning electron microscopy (SEM) is used to study the microstructure and fractures, focusing on crack initiation in the fiber interface transition zone (FITZ). The macrostructural analysis involves using digital image correlation (DIC) software, Ncorr, to analyze the split tensile behavior of plain and fiber reinforced concrete (FRC) specimens, calculating strain distribution and investigating crack initiation and propagation. The SEM study reveals that, due to the presence of hooked ends, industrial fibers promoted improved mechanical interlocking; created anchors within the matrix; added frictional resistance during crack propagation; significantly improved load transfer; and had better bonding, crack bridging, and crack deflection than recycled fibers. RSFs significantly delay crack initiation and enhance strength in the pre-peak zone. The study suggests hybridizing recycled fibers from automobile tires with industrial fibers as an optimum strategy for improving tensile performance and using environmentally friendly materials in FRC.

DOI:

10.14359/51744375


12345...>>

Results Per Page 





ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Edit Module Settings to define Page Content Reviewer