In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 15 Abstracts search results
Document:
SP87
Date:
September 1, 1985
Author(s):
Editor: Henry G. Russell
Publication:
Symposium Papers
Volume:
87
Abstract:
SP87 High-strength concretes are used frequently in applications requiring slender members to carry large loads or span long distances. Early applications of high-strength concrete emphasized its use to reduce column dimensions. More recently, high-strength concrete has been used to meet special project objectives such as large composite columns and stiffer structures. In turn, the use of high-strength concrete has prompted the applications of more stringent quality control requirements. This publication highlights the use, design implications, and research results of applications of high-strength concrete.
DOI:
10.14359/14044
SP87-13
Antoine E. Naaman and Joseph R. Homrich
The use of high strength concrete is attractive in precast prestressed concrete structures and in earthquake resistant structures for which a reduction in mass is of paramount importance. Yet applications of high strength concrete are hindered by its relative brittleness. Such a drawback can be overcome by addition of fibers. The present study describes the main effects of fiber reinforcement on the compressive stress-strain properties of high strength fiber reinforced mortar and concrete. The influence of various fiber reinforcing parameters such as volume fraction of fibers, aspect ratio, and type of fibers is illustrated. Trade-offs to achieve ductility while maintaining high strength are explained.
10.14359/6532
SP87-02
Alex Aswad and Weston T. Hester
In the prestressed, precast concrete industry high-strength concretes are widely used for axially loaded piles and columns, but also increasingly for flexural members such as double tee beams and girders. Use of high-strength concretes permits fabrication of longer, more slender spans and economic mild and prestressed reinforcing steel patterns. And, for plant-produced members the necessary high strength may be achieved easily and consistently without out-of-the-ordinary quality control procedures9 and this is documented here. To facilitate designs using high-strength concretes a number of design aids have been developed, and selected examples are persented. Finally, by its very nature, where high early strengths are required prestressed precast concrete members frequently have a substantial amount of long-term reserve capacity and excellent deflection control.
10.14359/6521
SP87-05
Pierre-Claude Aitcin, Pierre Laplante, and Claude Bedard
Test results of a field experiment are presented where a 90 MPa (13 000 psi) silica fume concrete was used in the construction of an experimental column of a 26-storey highrise building. This concrete used a set-retarding agent in addition to a superplasticizer, had a water/cementitious ratio of 0.25 and was delivered at a slump of 250 mm (10 inches) after 45 minutes of travel. Maximum temperature was reached about 30 hours after mixing and was about 45°C (113°F) higher than the initial temperature of the fresh concrete. The thermal gradient inside the column was never greater than 20"C/m (21"F/ft) and no thermal stress problems were noted. Expressions of the modulus of rupture and modulus of elasticity, as a function of the compressive strength, are proposed. The 91 days shrinkage of this very high strength silica fume concrete was similar to that of plain concrete having a W/C of 0.40. In one concrete batch, due to a superplasticizer overdosage that resulted in an 18-hour set retardation, entrapped air macropores of 1.0 um size were created and caused a 10 MPa (1 450 psi) strength reduction at 91 days.
10.14359/6524
SP87-14
Robert C. Chen, Ramon L. Carrasquillo, and David W. Fowler
Experimental investigations on the behavior of high strength concrete under uniaxial and biaxial short-term compressive stresses were conducted using thin square plate specimens. Strength, stress-strain relationship, mode of failure, and failure mechanism are discussed. Results confirm that a main cause of the increase in strength, stiffness, and proportional limit of concrete under biaxial compression is the confinement of internal microcracking preventing the development of a progressive failure mechanism. In addition, it was found that as the aggregate stiffness approaches that of the mortar, both the proportional limit and the discontinuity point of the concrete increase due to the reduction of stress concentrations. The observed failure mode for high strength concrete can be explained in terms of the limiting tensile strain criterion.
10.14359/6533
Results Per Page 5 10 15 20 25 50 100
Please enter this 5 digit unlock code on the web page.