International Concrete Abstracts Portal

ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-10 of 20 Abstracts search results

Document: 

SP86-19

Date: 

August 1, 1985

Author(s):

A. Farah

Publication:

Special Publication

Volume:

86

Abstract:

The serviceability of structures such as floors and tall buidlings to dynamic loading is assessed in terms of absorbed power which is the rate of energy dissipation through a standard biomechanical model simulating the human user of the structure. Design formulae and curves were developed to assist the engineer in assessing structural serviceability of existing structures and that of structures at the design stageforperiodic and transient vibration. Abstract: Some structures vibrate perceptibly when subjected to service dynamic loads. The serviceability of such structures which include floors and tall buildings is dependent upon the imposed excitations and the characteristics of the structure such as frequency, stiffness and damping. However, structural design practice has been dominated by deflection requirements limiting the live load deflection or the span to depth ratio of the main girders. These restrictions represent essentially static criteria and thus are not adequate to provide for proper serviceability under dynamic loading. It is to be noted that the loads producing disagreable vibrations are usually different in type and intensity from the design live loads and are only a small proportion of such loads. The objective of this paper is to present 'objective' criteria based on the response of the human user, for evaluating the structural serviceability of floors and tall buildings relative to vibrations in the vertical and fore-and-aft modes. These criteria, developed to deal with periodic and transient vibrations, are expressed in terms of the human response and the major characteristics of the structure. Based on the above criteria, design curves in terms of stiffness, frequency, mass and damping were produced to assist the engineer in arriving at a design satisfying both the strength and serviceability requirements. Furthermore, the serviceability of forty floors and tall buildings was assessed using these criteria. The loading on the floors included impact loads, excitations due to human walking and high-heel impact and the forces resulting from other human activity such as dancing which may produce resonance. The results indicate excellent agreement with the reported sub-jective ratings.

10.14359/6442


Document: 

SP86-18

Date: 

August 1, 1985

Author(s):

Musa R. Resheidat

Publication:

Special Publication

Volume:

86

Abstract:

The bending moments for any slab subjected to given loads are calculated by means of linear elastic methods. The required area of steel reinforcement can be calculated by using a method of ultimate strength design. Computations of slab deflections are carried out by modeling the moment-deflection relationship into a bilinear curve. This simplified approach considers the influence of reinforcement as well as the material properties of both concrete and steel. Deflections corresponding to the cracking and service loads are easily computed. Comparison with the ACI approach is also made. A computer program is written by the author and coded by FORTRAN 77 to carry out the numerical calculations. It is concluded that this method reflects the actual behavior of reinforced concrete slabs with respect to the estimated cracking and service load deflections.

10.14359/6441


Document: 

SP86-17

Date: 

August 1, 1985

Author(s):

Fahim A. Batla, Patrick R. Reisnour, and Divakar V. Pathak

Publication:

Special Publication

Volume:

86

Abstract:

A difference in temperatures exist among the various components of a flanged concrete structure which are exposed to different ambient temperatures. An experimental study indicates that a substantial temperature differential between the top flange and the bottom portion of a prestressed concrete box girder bridge superstructure can exist due to the daily and seasonal variations of the surrounding atmospheric temperatures. This paper presents methods which may be used for the computation of deformations and stresses in concrete structures due to temperature differentials. Analyses of a T-beam and of a box girder bridge superstructure are also presented as illustrative examples. These examples indicate a need of revising the design codes to emphasize the effects of the temperature differential in flanged concrete structures.

10.14359/6440


Document: 

SP86-16

Date: 

August 1, 1985

Author(s):

C. S. Putcha

Publication:

Special Publication

Volume:

86

Abstract:

Economical design of large span slabs which are required to support partitions can be controlled by deflections and other serviceability considerations rather than strength. This design is further complicated by considerations of variations in strength of concrete, placement of steel, etc. even for constant dead and live loads (short term, long term). Even in the deterministic case when the-parameters of long term live load, short term live load, fc, w,fy, maximum deflection limitations (due to loading, creep and shrinkage) are known, the solution for finding effective thickness and depth is found by trial and error amenable for iterative computerized approaches. This problem is especially severe when the partitions are installed while the slab is still shored. A probabilistic approach with variation in concrete strengths for given coefficient of variation to deflection controlled one way R. C. slab is developed with numerical examples and degenerate case of the-deterministic specified strength f'c. Comparison is made between the probabilistic design for long term deflection control and the professional practice oriented usual design procedure for numerical cases. This could be applied to both structural lightweight and normal weight concrete. Extension to the more generalized case of variability of loads, variability of methods of assessing creep and shrinkage deflections, etc. are also explored.

10.14359/6439


Document: 

SP86-15

Date: 

August 1, 1985

Author(s):

P. F. Walsh

Publication:

Special Publication

Volume:

86

Abstract:

The new draft Australian Concrete code contains sub-stantial revisions to the requirements for deflection and cracking of beams and slabs. The author was closely involved in the prepar-ation of this section of the draft code. The principle changes are explained in this paper and include: Load factors are specified for service loads. The adoption of the ACI (Branson) effective moment of inertia for deflection calculations for both reinforced and partially prestressed beams. The replacement of the allowable span-to-depth tables with revised formula consistent with the ACI formula. The method for slab deflection is related to equivalent beams. More stringent requirements are given for cracking in the secondary direction in slabs. Flexural cracking requirements are specified by bar spacing rules or limits on tensile stresses or bar stress increments.

10.14359/6438


Document: 

SP86-14

Date: 

August 1, 1985

Author(s):

Dan E. Branson and A. Fattah Shaikh

Publication:

Special Publication

Volume:

86

Abstract:

Unified procedures for computing the deflection (using Ie) and centroidal axis location (using a,) of nonprestressed and partially prestressed members under short-term loading are presented. These procedures include the average effects of tension stiffening and the random distribution of cracks along a member. Also included is the simplified Ie method adopted for the ACI Code (R/C) and PCI Handbook (P/C) since 1971, and AASHTO (R/C) since 1973; as well as the proposed Australian Concrete Code and the PCA Notes on the 1983 ACI Building Code for both nonprestressed (R/C)and partially prestressed (P/C) members. The unified I, method is based on the zero deflection point as the reference, whereas the simplified Ie, method for prestressed members is based on computing the live load deflection increment from the 'prestress camber' -minus - 'dead load deflection' point. Results by the two Ie methods are shown to be in relatively close agreement. A comparison is made between the centroidal axis location (ae d), based on an empirically determined average effective partially cracked section; and the theoretical centroidal axis location (c1), as determined by Nilson for the maximum tensile stress section. The results are thought to be reasonable. For computing long-term camber and deflection, a simple multiplier method used in the PCI Design Handbook, and a somewhat more detailed multiplier method used by ACI Committee 435 since 1963 and also used in the PCA Notes on the 1983 ACI Building Code, are applied to partially prestressed members. Results by the two methods are shown to be comparable.

10.14359/6437


Document: 

SP86-13

Date: 

August 1, 1985

Author(s):

S. G. Gilbert, D. J. Cleland, and A. E. Long

Publication:

Special Publication

Volume:

86

Abstract:

Results of an extensive experimental programme of tests to study the behaviour of both reinforced concrete and unbonded post-tensioned flat slab concrete structures are presented. The work has been carried out using very carefully designed and instrumented models of l/3 and l/4 scale. Particular attention has been given to correct control of the boundary conditions of the models such that the prototype multipanel structure is simulatedas accurately as possible. The effect of different variables such as column size, reinforcement levels, prestressing levels and layout of tendons on the load deflection characteristics of the slabs were investigated. The measured slab deflections have been:compared with the various code criteria, AC1 318-77 and CPllO Other research methods of predicting the deflection of two way slabs are considered and tested against the experimental data. The history of deflections beyond service loads up to ultimate loads is given and the changes in linearity are discussed and related to the cracking behaviour observed in the model structures.

10.14359/6436


Document: 

SP86-12

Date: 

August 1, 1985

Author(s):

Xuerun Ji, Sheng-Jin Chen, Ti Huang, and Le-Wu Lu

Publication:

Special Publication

Volume:

86

Abstract:

The deflection characteristics of waffle slab panels have been studied experimentally and analytically for three cases of loading: gravity load, in-plane shear, and combined gravity and shear. Scaled reinforced concrete model slabs have been tested with the gravity and shear loads applied either separately or simultaneously. Elastic finite element analysis has been made to study the deflections of the test slabs before cracking. Add-itional analytical studies have also been carried out using a method of "equivalent thickness", in which the waffle slab is re-placed by a slab of uniform thickness for computation.

10.14359/6435


Document: 

SP86-11

Date: 

August 1, 1985

Author(s):

Alex Aswad

Publication:

Special Publication

Volume:

86

Abstract:

age; beams (supports); camber; creep properties; defor-mation; prestressed concrete; prestressing steels; prestress loss; pretensioning; roofs; shrinkage; structural analysis; viscoelas-ticity.

10.14359/6434


Document: 

SP86-10

Date: 

August 1, 1985

Author(s):

A. E. Aktan, V. V. Bertero, and K. Sakino

Publication:

Special Publication

Volume:

86

Abstract:

The lateral stiffness characteristics of medium-rise frame-wall systems were investigated at the serviceability limit state. Physical models of two exemplary structures, as well as individual wall elements, were tested. Experimentally measured displacements, local distortions, and internal force distributions were observed to differ by more than 100 percent from the analytically generated ones. The flexural, shear, and axial stiffnesses of individual wall elements were observed: (1) to be strongly influenced by intensity of axial force, (2) to approach nominal values based on gross-transformed section properties only at axial compression levels nearing the balanced value in the wall axial-flexural strength interaction relationship, (3) to decrease to less than 20 percent of the nominal stiffnesses at axial force levels approaching zero, and (4) to degrade significantly upon cracking at the serviceability limit state. Microcracking and very narrow cracking due to shrinkage induced by volumetric changes were identified as the main factors leading to reduced stiffnesses of walls upon first loading.

10.14359/6433


12

Results Per Page