In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Founded in 1904 and headquartered in Farmington Hills, Michigan, USA, the American Concrete Institute is a leading authority and resource worldwide for the development, dissemination, and adoption of its consensus-based standards, technical resources, educational programs, and proven expertise for individuals and organizations involved in concrete design, construction, and materials, who share a commitment to pursuing the best use of concrete.
Staff Directory
ACI World Headquarters 38800 Country Club Dr. Farmington Hills, MI 48331-3439 USA Phone: 1.248.848.3800 Fax: 1.248.848.3701
ACI Middle East Regional Office Second Floor, Office #207 The Offices 2 Building, One Central Dubai World Trade Center Complex Dubai, UAE Phone: +971.4.516.3208 & 3209
ACI Resource Center Southern California Midwest
Feedback via Email Phone: 1.248.848.3800
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 12 Abstracts search results
Document:
SP73-05
Date:
March 1, 1982
Author(s):
Ray W. Clough and Akira Niwa
Publication:
Symposium Papers
Volume:
73
Abstract:
The basic purpose of this research was to investigate the feasibility of studying the nonlinear earthquake response behavior of concrete arch dams on a 20 ft. square shaking table. Assuming a length scale of l/150, the essential similitude requirements for the model material are derived. The development of suitable plaster, celite, sand and lead powder mixtures is described, and the proportions and properties of adopted materials are listed. Shaking table tests are described of a segmented arch rib model designed of this material to simulate the monolith joint opening behavior of an arch dam, and preliminary results are presented. Also, the test of a model of Koyna Dam is mentioned, where the model behavior simulated the observed cracking of the prototype. The principal conclusion of the investigation is that shaking table research is a practical means of studying the nonlinear earthquake response of concrete arch dams, including their actual failure mechanisms.
DOI:
10.14359/6775
SP73-08
Alan J. Watson and John E. lnkester
The paper describes the behavior of a 1/8th scale model reinforced concrete beam to column joint under an impact load applied to the beam. The load is produced by a 1.68kg steel rod fired from an air gun with an impact velocity of either 8.9 m/s or 13.4 m/s. The column reactions were measured by foil electrical resistance strain gauges on 3 load cells. Similar strain gages gave the incident and reflected stress pulse from which the impact load on the beam has been obtained. The deflections of the beam during the impact were recorded using moving coil linear displacement transducers. The measured behaviour of the joint under impact load has been compared with that of identical specimens under static load and with calculated values.
10.14359/6778
SP73-04
Daniel P. Abrams
Modeling techniques used in an experimental study of frame-wall interaction in multistory buildings subjected to strong earthquake motions are described. Considerations involved with the selection of materials, structural configuration, amounts of mass, and frequency contents and intensities of base motions are discussed with respect to limitations of small-scale modeling of reinforced concrete structures behaving in the nonlinear range of response. Samples of response observations are presented to demonstrate the applicability of using small-scale models for earthquake-engineering research.
10.14359/6774
SP73-11
Harry G. Harris and George Jau-Jyh Wang
This paper presents a methodology for designing, fabricating, and testing small-scale dynamic models of precast concrete shearwalls originating in the construction of large panel precast concrete buildings. Design and construction of a set of 3/32-scale models which satisfy dynamic similitude is presented. Resonent vibration testing of three-story and five-story precast concrete shearwall models on a small shake table is described. Additional monotonic and cyclic tests on six five-story shearwall models under simulated earthquake loading are presented. The main parameters in these tests were the amount of steel in the vertical ties and cyclic versus monotonic loading.
10.14359/6781
SP73-06
W. G. Godden
This paper discusses shaking table tests conducted on models of two long-span curved highway bridges to study seismic response. The first is a microconcrete model study of a multi-span highway overcrossing of the type that failed in the 1971 San Fernando earthquake. This shows the predominant influence of the expansion joints in the system on gross dynamic behavior and on the failure load. The second is an elastic model study of a proposed single-span cable-stayed curved box girder bridge designed without expansion joints and cast integrally with the abutments. This shows the small damping in such a system, the influence of cable vibrations on the overall dynamic behavior, the degree to which linear dynamic analysis is applicable in determining seismic response and the efficiency of such a design in resistin horizontal ground motions.
10.14359/6776
Results Per Page 5 10 15 20 25 50 100
Please enter this 5 digit unlock code on the web page.