ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 16 Abstracts search results
Document:
SP-350_15
Date:
November 1, 2021
Author(s):
Wael A. Zatar, M. Ammar Alzarrad, Tu T. Nguyen, and Hai D. Nguyen
Publication:
Symposium Papers
Volume:
350
Abstract:
In this paper, the artificial neural network (ANN) method is utilized to predict ground-penetrating radar reflection amplitudes from four different inputs, namely, temperature, ambient relative humidity, chloride level, and corrosion condition on the surface of the reinforcing bar. A total of 288 ground penetrating radar (GPR) data points were collected from a series of chloride-contaminated concrete slabs under various environmental profiles that were used to train, validate, and test the proposed ANN model. The ANN model performed well in predicting the GPR reflection signals, with the overall coefficient of determination (R2) being 0.9958. The overall mean squared error (MSE) and root mean squared error (RSME) values are 0.015 and 0.122, respectively. These values are very low, which means that the ANN model has an excellent prediction capability. The research results show that the GPR reflection amplitudes are more sensitive to the temperature changes and chloride level parameters than the ambient relative humidity and rust condition on the reinforcing bar surface. Using the ANN method to predict the GPR reflection amplitudes is relatively new for structural concrete applications. This study paves the way for further developments of neural networks in civil and structural engineering.
DOI:
10.14359/51734322
SP-350_01
AlaaEldin Abouelleil, Hayder A. Rasheed, and Eric Fletcheri
The structural deterioration of aging infrastructure systems is becoming an increasingly important issue worldwide. To compound the problem, economic strains limit the resources available for the repair or replacement of such systems. Over the past several decades, structural health monitoring (SHM) has proven to be a cost-effective method for the detection and evaluation of damage in structures. Visual inspection and condition rating is one of the most commonly applied SHM techniques, but the effectiveness of SHM varies depending on the availability and experience of qualified personnel and largely qualitative damage evaluations. Simply supported three-dimensional reinforced concrete T-beams with varying geometric, material, and cracking properties were modeled using Abaqus finite element (FE) analysis software. Up to five cracks were considered in each beam, and the ratios of stiffness between cracked and healthy beams with the same geometric and material parameters were measured at nine equidistant nodes along the beam. A feedforward ANN utilizing backpropagation learning algorithms was then trained on the FE model database with beam properties and nodal stiffness ratios serving as inputs for the neural network model. The outputs consisted of the predicted parameters of location, depth, and width of up to five cracks. This inverse problem is very difficult or impossible to solve with the training done by the Artificial Neural Network. One ANN was trained to predict the parameters of the cracks using the full database of FE simulations. The damage prediction ANN achieved fair prediction accuracies, with coefficients of determination (R2) equal to 0.42. This result was the outcome of the no uniqueness in the prediction of this inverse analysis. Nevertheless, this ANN model provides a rough estimate of the cracking type and damage content in bridge girders once the nodal stiffness ratios are measured by applying a field vehicle loading and measuring the deflection using a theodolite. A touch-enabled user interface was developed to allow the ANN model to predict the crack configurations. The application was given the acronym DRY BEAM, for Damage Recognition Yielding Bridge Evaluation After Monitoring.
10.14359/51734308
SP-350_02
Muneera Aladsani, Henry Burton, Saman Abdullah, and John Wallace
Many modeling approaches in engineering are based on physical principles. The input and output relationships are developed using physical laws (e.g., Newton's laws of motion and conservation of mass and energy). However, in many situations, the development of physically-based models requires simplifying assumptions due to the complicated nature of the systems, which could lead to a large degree of uncertainty. In these situations, data can be used to formulate models by detecting relationships between the system’s variables (inputs and outputs) without explicitly knowing the physical behavior of the system. Therefore, there is a paradigm shift from physically-based models to data-driven models. The objective of this study is to develop a drift capacity prediction model for structural walls with special boundary elements using the extreme gradient boosting (XGBoost) machine learning algorithm. The resulting prediction model is compared with the recently developed empirical model presented in literature i.e., the Abdullah & Wallace (2019) model. The results reveal the proposed model’s superior predictive capabilities relative to the empirical model.
10.14359/51734309
SP-350_03
Shashank Gupta, Salam Al-Obaidi, and Liberato Ferraral
Concrete and cement-based materials inherently possess an autogenous self-healing capacity, which is even higher in High- and Ultra-High-Performance Concrete (HPC, UHPC) because of the high content of cement and supplementary cementitious materials (SCM) and low water/binder ratios. In this study, quantitative correlation through statistical models have been investigated based on the meta-data analysis. The employed approaches aim at establishing a correlation between the mix proportions, exposure type, and time and width of the initial crack against suitably defined self-healing indices. This study provides a holistic investigation of the autogenous self-healing capacity of cement-based materials based on extensive literature data mining. This is also intended to pave the way towards consistent incorporation of self-healing concepts into durability-based design approaches for reinforced concrete structures. The study has shown that the exposure type and duration, crack width size, and chemical admixtures have the most significant promotion on self-healing indices. However, other parameters, such as fibers and mineral admixtures have less impact on the autogenous self-healing of UHPC. The study also proposes suitably built design charts to quickly predict and evaluate the self-healing efficiency of cement-based materials which can significantly reduce, in the design stage, the time and efforts of laboratory investigation.
10.14359/51734310
SP-350_04
Mohammad H. AlHamaydeh, Ahmed F. Mohamed, and Mahmoud I. Awad
Structural systems are critical components of modern societies, and as such, need constant condition assessments. Incurred damage and its accumulation due to various loading conditions may lead to complete structural failures with safety consequences. Thus, damage assessment and early fault detection are essential to decision-makers for strategic planning, performing resource-allocation, and obtaining the logistics of these systems. In this article, a data-driven methodology using fault detection of structural systems is proposed. This method utilizes Artificial Neural Networks (ANNs) to model damage due to earthquake loading using sophisticated nonlinear analyses of structures. As a proof-of-concept, the ANN approach for damage-detection is applied to a typical four-story reinforced concrete (RC) structure having varied concrete strengths. The approach is found to have a high potential for successful anomaly identification in RC structural systems.
10.14359/51734311
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer