ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 14 Abstracts search results

Document: 

SP334

Date: 

October 9, 2019

Author(s):

Moncef L. Nehdi

Publication:

Symposium Papers

Volume:

334

Abstract:

To improve the eco-efficiency and sustainability of concrete, the cement and concrete industry can exploit many byproducts in applications that could, in some cases, outperform conventional materials made with traditional ingredients. This Special Publication of the American Concrete Institute Committee 555 (Concrete with Recycled Materials) is a contribution towards improving the sustainability of concrete via using recycled materials, such as scrap tire rubber and tire steel wire fiber, GFRP waste, fluff, reclaimed asphalt pavements, recycled latex paint, and recycled concrete aggregate. Advancing knowledge in this area should introduce the use of recycled materials in concrete for applications never considered before, while achieving desirable performance criteria economically, without compromising the quality and long-term performance of the concrete civil infrastructure.

DOI:

10.14359/51721381


Document: 

SP-334-02

Date: 

September 30, 2019

Author(s):

Anol Mukhopadhyay and Xijun Shi

Publication:

Symposium Papers

Volume:

334

Abstract:

Potential issues associated with depletion of good aggregate sources and management of excess RAP stockpiles increasingly motivate use of RAP in PCC as a coarse aggregate replacement. Texas has shown great interest in disposing excess RAP stockpiles and a systematic study on using RAP in PCC for Texas pavement applications was conducted by the authors recently. This paper provides a concise summary of the findings from this study. The major conclusions are (1) PCC mixture with dense aggregate gradation can be achieved by adding coarse RAP with adequate intermediate sized particles, which offers better overall performance in terms of workability and mechanical properties, (2) RAP-PCC with coarse RAP replacement up to 40% showed considerable reduction for modulus of rupture. Asphalt cohesive failure (crack passing through the asphalt layer) was found to be the main mechanism responsible for the strength reductions, (3) the addition of allowable amounts of RAP into PCC provides equivalent durability performance relative to plain PCC, and (4) constructing pavements with RAP-PCC yields economic, environmental and social benefits.

DOI:

10.14359/51720251


Document: 

SP-334-01

Date: 

September 30, 2019

Author(s):

Yuan Tian and Ardavan Yazdanbakhsh

Publication:

Symposium Papers

Volume:

334

Abstract:

Due to their unique mechanical characteristics, glass fiber reinforced polymer (GFRP) composite materials are difficult to recycle at the end of their service lives. In the present work, a specific approach of recycling GFRP waste for use in concrete is investigated. Scrap from GFRP rebar and waste from a GFRP wind turbine blade shell were processed into slender elements, referred to as “needles,” with a length of 100 mm and used in concrete to replace 5% and 10% of natural coarse aggregate. The results of testing various concrete specimens revealed that the incorporation of needles with longitudinally aligned glass fibers increased the splitting tensile strength of concrete significantly. Both types of recycled needles, regardless of the source of waste and orientation of glass fibers, increased the tensile toughness of concrete significantly. In addition, it was observed that incorporating needles did not reduce concrete’s slump, due to the relatively high specific surface area of the needles. The findings suggest that recycling GFRP waste into needles as concrete reinforcement may be a viable GFRP waste management strategy and deserves further research.

DOI:

10.14359/51720250


Document: 

SP-334-13

Date: 

September 30, 2019

Author(s):

Luz Angélica Rodríguez-Bello, Pedro Nel Quiroga, Juan Pablo Agudelo, and María Paulina Villegas-De-Brigard

Publication:

Symposium Papers

Volume:

334

Abstract:

Construction and demolition waste (CDW) has become an environmental, social and economic problem in some regions. Many initiatives to increase CDW recycling and concrete with recycled aggregates have failed or have not accomplished the goals, due to the lack of good management. In Bogotá, even though regulations establish that 25% must be harnessed, only 17% is achieved. To obtain rates as high as the global ones, a CDW diagnosis in works is run and policy instruments that would allow the application of a circular economy concept as opposed to a linear economy are determined. It is found that economic and informative instruments are the most popular worldwide and the most requested at the national level, in comparison to regulatory instruments which currently prevail in Bogotá. Likewise, the literature highlights prevention actions and the national context prefers recycling and disposition actions.

DOI:

10.14359/51720266


Document: 

SP-334-12

Date: 

September 30, 2019

Author(s):

A. Said and O. Quiroz

Publication:

Symposium Papers

Volume:

334

Abstract:

In the U.S. and around the world, large amounts of waste latex paint are generated annually, which creates a significant challenge in terms of disposal in an economic manner. Paint contains some chemicals that may be harmful to the environment if recycled as it contains volatile organic compounds. However, waste latex paint can be used to produce an economic latex-modified pervious concrete that is similar or superior to regular pervious concrete. Previous studies investigated recycling waste latex paint in concrete applications such as sidewalks. This study investigates the use of waste latex paint in producing pervious concrete and the effect of using different ratios of paint addition on the properties of the studied mixtures. The properties evaluated included physical, mechanical and hydraulic properties. Results show that while waste latex paint recycling in pervious concrete can slightly reduce its mechanical properties at 5% polymer to cement content, it can still be a viable option to prevent paint disposal in landfills.

DOI:

10.14359/51720264


123

Results Per Page