ACI Global Home Middle East Region Portal Western Europe Region Portal
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
Showing 1-5 of 11 Abstracts search results
Document:
SP244
Date:
May 1, 2007
Author(s):
Editor: Corina-Maria Alde / Sponsored by: ACI Committee 549
Publication:
Symposium Papers
Volume:
244
Abstract:
The main advantage of continuous fibers and textiles as reinforcements in cement-based composites is the enhancement of mechanical behavior. There is an improvement both in the tensile and flexural performance, as well as in the ductility of the cementitious composite. The diversity in terms of fabric making, fabric geometry, and input fiber types and yarns provides an opportunity for development of cement based composites and allows engineering of the performance of the final products for the desired requirements. Recognizing the increasing research interest in thin fiber-reinforced cement-based composites using textiles and hybrid systems (textiles and chopped fibers) and their emerging industrial applications, ACI Committee 549 sponsored a two-part technical session on “Thin Fiber and Textile Reinforced Cementitious Systems” at the ACI Spring 2005 Convention in New York. Ten papers were presented by invited international experts from Canada, Germany, Hong Kong, and the United States. This Special Publication (SP) contains ten papers which provide insight on the topics of state of the art of thin fiber and textile-reinforced cementitious systems both in academia and the industry. The topics of the papers cover experimental and theoretical materials aspects, such as the effect of different input fibers, fabric type, and construction and matrix on mechanical and long-term properties of the composite; experimental and theoretical considerations on yarn-to-matrix bond and load transfer; as well as applications of the cementitious composites proposed and examples of strengthening of reinforced concrete using textile-reinforced concrete. The future of thin fiber and textile-reinforced cementitious systems depends on their ability to compete with existing solutions and to identify new applications. Research and development efforts are required in the areas of process, design, and applications of textile-reinforced concrete.
DOI:
10.14359/18667
SP244-10
S. Weiland, R. Ortlepp, A. Bruckner, and M. Curbach
Strengthening by textile reinforced concrete noticeably increases both the ultimate load bearing capacity as well as the serviceability - especially deflections, crack widths and crack spacing are reduced. Beside that there are still some practical applications. This paper will give an overview of the ongoing research work with this new composite material Textile Reinforced Concrete (TRC).
10.14359/18758
SP244-08
B. Mobasher, N. Jain, C.-M. Aldea, and C. Soranakom
Mechanical properties of a cement-based matrix - grid (CMG) system developed for masonry rehabilitation are discussed. CMG system is a composite consisting of a sequence of layers of cement-based matrix and alkali resistant (AR)-glass coated reinforcing grid. The experimental program included tension and flexural tests of composites with special consideration to long term durability. Variables studied include effect of composite thickness, fabric orientation, and effect of accelerated aging on the tensile and flexural responses. Results indicate that samples in the cross machine direction (XMD) showed the best combination of high tensile strength (in excess of 5 MPa?0.725 ksi) and Ultimate strain value (2.36%) as compared to the machine direction (MD) with (5 MPa?0.725 ksi and ultimate strain of 1.8%). After 28 days of accelerated aging, tensile strengths reduced to about 3.87 MPa?0.56 ksi for the MD and XMD directions respectively, representing average reductions of 23% and 17%. In the flexural samples, cross machine samples (XMD) show a combination of high flexural strength (15-17 MPa?2.18-2.47 ksi) and Maximum deflection (of 15-22 mm?0.59-0.87 in) as compared to the MD samples. Higher stiffness of fabrics in the cross machine direction due to the manufacturing process was the source of such differences in behavior. The first crack strain in flexure is as much as the ultimate tensile strength in tension for many composites. A discussion of comparison of tensile and flexural stress measures is presented.
10.14359/18756
SP244-09
C.-M. Aldea, B. Mobasher, and N. Jain
The research presented in this paper focuses on a cement-based matrix-grid (CMG) system developed for masonry rehabilitation. The objectives of the research and development program were to determine the mechanical properties of the CMG system and to assess its effectiveness for improving unreinforced masonry (URM) wall seismic performance from a load bearing capacity and deflection limits point of view. CMG system is a composite consisting of a sequence of layers of cement-based matrix and alkali resistant (AR) glass coated reinforcing grid. The experimental program included materials and structural tests. Tensile and flexural tests were carried out on unaged and aged composite to assess its long term durability up to the equivalent of approximately 129 years service life. Selected tensile test results are presented in this paper, whereas full details of materials tests are presented in a separate paper. Structural tests included in-plane shear concrete masonry unit (CMU) walls. Three composite configurations were explored and the results were compared with those obtained using various fiber reinforced polymer (FRP) systems overlay configurations also tested in in-plane shear. Retention of tensile properties over time was approximately 75-80% after the equivalent of approximately 50 years service life. Structural test results demonstrated the ability of the cement-based system to strengthen the walls, and showed superior performance of field CMG system compared to FRP alternatives. X-cracking failures were observed, there was no delamination of the system from the CMU walls, and the system held the masonry pier together at failure. Due to its advantages and unique properties this system is a potential alternative to traditional and new FRP masonry rehabilitation and strengthening techniques.
10.14359/18757
SP244-06
R. Hempel, M. Butler, S. Hempel, and H. Schorn
Concrete specimens with unidirectional embedded AR-glass rovings were stored in a climatic test chamber at 40 °C (104 °F) and 99 % r.h. After this storage, the bending strengths of the specimens were tested. The uncovered fibers were observed with an Environmental Scanning Electron Microscope (ESEM). The specimens made of the low alkaline matrix and AR-glass rovings showed no strength losses. Whereas, the specimens reinforced with E-glass showed dramatic losses of strength and corrosion of glass fibers. Also, the specimens made of the high alkaline matrix and AR-glass reinforcement showed losses of strength. A corrosion of the fibers could not be detected. Causes for the measured losses of load capacity when using AR-glass reinforcement and Portland cement matrix are the weak points inside the interface fiber-matrix, caused by portlandit crystals. Storage tests in simulated pore solution of 80 °C (176 °F) and pH 13 showed clearly, that glass corrosion cannot start before the protective fiber size is at least partially dissolved. In this case, the VET-AR-glass fibers are of advantage. During the alkaline attack on the unprotected AR-glass surface, the content of zirconium dioxide determines the corrosion resistance for the respective glass. In this case, the NEG-AR fibers are of advantage. The investigations show, that durable fiber concretes and textile reinforced concretes with AR-glass respectively can be produced by optimizing the mixtures. In this respect, the climatic test chamber storage proved to be an accelerated aging test.
10.14359/18754
Results Per Page 5 10 15 20 25 50 100
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.