ACI Global Home Middle East Region Portal Western Europe Region Portal
Email Address is required Invalid Email Address
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 92 Abstracts search results
Document:
SP228
Date:
June 30, 2005
Author(s):
Editor: Henry G. Russell
Publication:
Symposium Papers
Volume:
228
Abstract:
SP-228CD This CD-ROM of Special Publication 228 contains the papers presented at the Seventh International Symposium on the Utilization of High-Strength/High- Performance Concrete that was held in Washington, D.C., USA, June 20-24, 2005. The symposium continued the success of previous symposia held in Stavanger, Norway, (1987); Berkeley, California (1990); Lillehammer, Norway, (1993); Paris, France, (1996); Sandefjord, Norway, (1999); and Leipzig, Germany, (2002). The symposium brought together engineers and material scientists from around the world to discuss topics ranging from the latest applications to the most recent research on high-strength and high-performance concrete. In the years since the first symposium was held in Stavanger, there has been worldwide growth in the use of both high-strength and high-performance concrete. In addition to more research and applications of traditional types of high-performance concrete, the use of self-consolidating concrete and ultra-high-performance concrete has moved from the laboratory to practical applications. This publication offers the opportunity to learn the latest about these developments.
DOI:
10.14359/16471
SP228-02
June 1, 2005
Okamura, K. Maekawa, and T. Mishima
This paper contains an historical review of self-compacting concrete clarifies and the original concept. Further, combinations of self-compacting concrete for high strength and durability are discussed in relation to structural concrete design, construction and maintenance, and recent development of performance-based design codes and manuals for SCC. On the competitiveness in industries, life-cycle cost is estimated for sustainable development of the infrastructure.
10.14359/14458
SP228-95
A. Yonekura, H. Ito, S. Wakasugi, S. Goto, S. Numata, and H. Maeda
This study deals first with the deterioration of glass fiber in mortar due to the alkali of cement and how to improve the deterioration of the glass fiber in mortar using special admixture of blast furnace fume (BFF). The deterioration is estimated by an accelerated test for flexural strength of mortar stored in water at 80 °C for 3 weeks. Secondly, the deterioration of mortar due to sulfuric acid attack using blast furnace fume(BFF) is investigated. Dust collected from the top of Chinese small-sized iron blast furnaces is called BFF in Japan , and is used as admixture for high strength concrete in China. BFF is composed of very fine particles with spherical shape. Its average grain size is several micrometers in diameter. Test results of this first study shows that the deterioration of glass fiber in mortar due to alkali is not improved by using BFF alone but is significantly improved by using both BFF and blast furnace slag (BFS) or silica fume (SF). Concerning acid attack, it is found that the deterioration of mortar in dilute sulfuric acid is significantly decreased by using both of BFF and BFS or SF.
10.14359/14550
SP228-96
C. Magureanu, B. Heghes, and B. Rosca
Chemical attack poses a serious problem for concrete structures in severe environments. This investigation deals with exposure of high strength/high performance concrete to sulfate attack in a controlled environment. Experimental tests consisted of measuring the compressive strength, tensile strength and modulus of elasticity after 3 years of exposure to corrosive conditions consisting of chemical solutions containing 1%(NH4)2SO4 and 2%(NH4)2SO4.
10.14359/14551
SP228-92
E.H. Hewayde, E.N. Allouche, and G. Nakhla
Corrosion of concrete sewer pipes by sulfuric acid attack is a problem of global scope. The current paper aims at evaluating two supplementary cementing materials metakaolin and geopolymer cement as partial cement replacements for improving the ability of concrete to resist severe sulfuric acid attack. Both, metakaolin and geopolymer cement were found to significantly improve the resistance of concrete made of Type 10 and 50E cements to 3% and 7% sulfuric acid solutions (pH of 0.6 and 0.3, respectively). Maximum weight loss reduction with respect to the control for specimens made of modified Type 50E cement ranged between 20% and 37%, depending on the additive and the concentration of the acid. Maximum weight loss reduction for specimens made of modified Type 10 cement range between 10% and 42%, depending on the additive and the concentration of the acid. For this test Type 10 cement was found to perform best in the presence of geopolymer cement while the performance of the Type 50E cement was best when metakaolin was used as partial replacement for cement. The results emphasize the important role that the nature and composition of hydration products and the completeness of the hydration process play in improving concrete resistance to acid attack.
10.14359/14547
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer