ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

Showing 1-5 of 9 Abstracts search results

Document: 

SP191

Date: 

December 1, 1999

Author(s):

Editor: Mohammad S. Khan / Sponsored by: ACI Committee 201

Publication:

Symposium Papers

Volume:

191

Abstract:

This publication should be of interest to individuals involved in concrete failure investigations, particularly those related t o durability, and in quality control efforts aimed at assuring a durable structure. Academics, researchers, materials engineers, forensic engineers, and materials producers should all benefit from the information presented in this publication. Note: The individual papers are also available as .pdf downloads.. Please click on the following link to view the papers available, or call 248.848.3800 to order. SP191

DOI:

10.14359/14230


Document: 

SP191-05

Date: 

December 1, 1999

Author(s):

K. A. MacDonald and D. O. Northwood

Publication:

Symposium Papers

Volume:

191

Abstract:

The water/cementitious ratio of concrete is an important indicator of quality of concrete in the numerous ways that have been chosen to measure it. Low water/cementitious ratio concretes are high strength, low permeability, high durability and permanent concretes. It is also a property which is not frequently measured at the time of construction or on concretes which undergo distress during their service life due to the lack of standardized test methods and cheap test procedures for determining this property. In the present study, the use of electrical resistance measurements to estimate the water cementitious ratio and chloride ion diffusivity in terms of water cementitious ratio, compressive strength of concrete is explored. Both hardened and plastic concretes were studied, over a wide range of water/cementitious ratios. Supplementary cementing materials, paste volume fractions and admixture chemistries were varied as well. The results indicate that a rapid, field portable test can be used to estimate the water/cementitious ratio of plastic concrete delivered to the site, as well as samples of hardened concrete removed from structures. Use of the formation factor analogy to describe the pore system and measurements of the total pore volume allow an estimate of the transport properties of the concrete, such as diffusivity and permeability. Properties estimated by this technique are compared to those determined using the standard determination methods. The implications of using assumed pore solution characteristics are discussed. The method developed is potentially useful in both Quality Assurance and Quality Control testing of high performance structures. Additional work is required to develop a field test.

DOI:

10.14359/5734


Document: 

SP191-04

Date: 

December 1, 1999

Author(s):

B. Erlin and R. A. Campbell

Publication:

Symposium Papers

Volume:

191

Abstract:

The Knoop microhardness method (ASTM 384) and the Rockwell microhardness method (ASTM E 18)-each show promise for estimating water-cement ratios of hardened paste. Tests of hardened pastes at water-cement ratios from 0.30 to 0.55 were completed. A good relationship of Knoop or Rockwell microhardness to water-cement ratio exists. The Rockwell microhardness method was done using automated image analysis equipment and was much faster. Further evaluations need to be done as follows: (1) the effect of indentation size, which can be controlled by varying the load weight; (2) rate of loading effect; (3) effects of inert and chemically active admixtures (e.g. limestone, ground granulated blast-furnace slag, pozzolans); (4) the effect of the degree of cement hydration; (5) effects of carbonation; (6) magnitude of spurious data resulting because of subsurface materials (e.g. residual cement, aggregate fines); and (7) effects of different surface preparation techniques. The microhardness method has promise as a means for estimating water-cement ratio of hardened concrete paste. It is hoped that the work completed to date will be continued by others.

DOI:

10.14359/5733


Document: 

SP191-08

Date: 

December 1, 1999

Author(s):

S. J. DeSouza, R. D. Hooton, and J. A. Bickley

Publication:

Symposium Papers

Volume:

191

Abstract:

The performance needs of the Toronto Transit Commission (TTC), for the reinforced concrete tunnel liner segments for the Toronto Sheppard Line Subway required a service life of at least 100 years. Under the contract specification for chloride diffusion, compliance with this requirement was determined by the water permeability and chloride diffusion coefficients of the concrete. The specified test procedures required up to six months for final test results, after a segment was cast. From a practical point of view, what is required is confirmation that the segments are acceptable shortly after they have been cast. An in-situ rate of absorption (sorptivity) test was modified and implemented. This paper summarizes the implementation of this simple test procedure into the QC programme to non-destructively evaluate the quality of the concrete shortly after fog curing is complete. The primary research goal of this project was to develop a service life model that utilized the initial sorptivity value as determined by the in-situ sorptivity test combined with a diffusion value established for the concrete mix. The use of service life modelling to predict performance of reinforced concrete structures exposed to chlorides is the next logical step to provide assurance of longevity for owners.

DOI:

10.14359/5737


Document: 

SP191-03

Date: 

December 1, 1999

Author(s):

U. H. Jakobsen, P. Laugesen, and N. Thaulow

Publication:

Symposium Papers

Volume:

191

Abstract:

This paper describes a method for determining the water to cement ratio (w/c) of hardened concrete using optical fluorescence microscopy. The method is well established and has been used for many years. In Denmark the method is used for quality control of hardened concrete. The method is based on vacuum impregnation of concrete using a yellow fluorescent epoxy. During impregnation the capillary porosity, cracks, voids, and defects in the concrete are filled with epoxy. The amount of fluorescent dye entering the cement paste depends on the capillary porosity, which is determined by the w/c and the degree of hydration. After impregnation and hardening of the epoxy a thin section of concrete with a thickness of 0.020 mm (20 µm) is prepared. The thin section is analyzed under an optical microscope using a combination of a blue excitation filter and a yellow blocking filter. This is the fluorescent light mode in which epoxy filling air voids and cracks appears yellow, cement paste as shades of green, and aggregate black. The shade of green of the cement paste depends on the capillary porosity. A sample with low w/c appears dark green, i.e. has less fluorescence intensity due to a low amount of epoxy within the paste. A sample with high w/c appears light green, i.e. has high fluorescence intensity. These shades of green (fluorescence intensity) are used to determine the w/c by comparing the fluorescence intensity of the cement paste with the standards of known w/c. This paper describes the fluorescent impregnation technique, the thin section preparation, the visual determination of w/c and discusses the pitfalls in the w/c determination. Furthermore, the paper presents data from a quality assurance project and damage analysis and data of Round Robin Testing.

DOI:

10.14359/5732


12

Results Per Page