ACI Global Home Middle East Region Portal Western Europe Region Portal
In today’s market, it is imperative to be knowledgeable and have an edge over the competition. ACI members have it…they are engaged, informed, and stay up to date by taking advantage of benefits that ACI membership provides them.
Read more about membership
Learn More
Become an ACI Member
Topics In Concrete
Home > Publications > International Concrete Abstracts Portal
The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.
Showing 1-5 of 56 Abstracts search results
Document:
SP138-44
Date:
September 1, 1993
Author(s):
S. Kumahara, Y. Masuda, H. Tanano, and A. Shimizu
Publication:
Symposium Papers
Volume:
138
Abstract:
To estimate the heat resistance of continuous fiber bar, tensile strength of several types of continuous fiber bars were examined under high temperature and ordinary temperature after heating and cooling. The temperature range was 60 to 400 C. It was found that the tensile strength of organic binder bar was recovered under ordinary temperature after heating and cooling compared with higher temperature. Organic binder bars showed little decrease of tensile strength at high temperature. Carbon and glass fibers have more heat resistance than aramid fiber bars.
DOI:
10.14359/3954
SP138-45
K. Nakano, Y. Matsuzaki, H. Fukuyama, and M. Teshigawara
An experimental investigation was carried out to study and evaluate the flexural performance of concrete beams reinforced with continuous fiber bars (main reinforcing bars and prestressing tendons). Two series of flexural tests were conducted, and the primary variables were fiber material, tensile reinforcement ratio, concrete compressive strength, and bond condition in prestressing tendon. Through this experimental study, the following facts were clarified. The flexural performance of concrete beams reinforced with continuous fiber bars can be evaluated by conventional methods used in concrete beams reinforced with steel bars. The ductility capacity of reinforced concrete beams can be controlled by the compressive failure of concrete, and in prestressed concrete beams, can be controlled by changing unbonded length of prestressing tendon.
10.14359/3955
SP138-46
T. Kanakubu, K. Yonemaru, H. Fukuyama, M. Fujisawa, and Y. Sonobe
An experimental program consisting of three series of tests was conducted to investigate the bond performance of concrete members reinforced with FRP bars. First, a simple bond test was performed using several types of FRP bars. This test was carried out by pulling out a single bar located near the surface of the concrete block. The test objectives were to evaluate the bond splitting strength of FRP reinforced concrete without lateral reinforcement and to establish a standard test method for bond splitting. Test results show that the bond splitting strength can be estimated using the ratio of lug height to diameter of FRP bars. In the second test, a bond splitting test was conducted on cantilever-type specimens. These were modeled to exhibit a stress condition similar to an actual structure. The test objectives were to study the results of the simple bond test and evaluate the increment of the bond splitting strength caused by lateral reinforcement. From the test results, the tendency of the bond splitting strength without lateral reinforcement is equal to that obtained from the first test. The increment of the strength caused by lateral reinforcement can be evaluated in terms of its percentage and elastic modulus. Finally, an antisymmetrical loading test for actual beams reinforced with FRP bars was carried out. The bond performance obtained for the longitudinal bars shows a good correlation with the results obtained from the former two tests.
10.14359/3956
SP138-01
W. Reinold De Sitter and rene A. Vonk
In concrete pretensioned with nonmetallic fiber reinforced plastic reinforcement (FRPR), the Hoyer effect leads to high splitting stresses due to confinement of radial deformations of bars or strands in the transfer zone. Incompatible linear temperature expansion can aggravate the splitting stresses. Bond in the transfer zone is heavily influenced by the confined radial expansion, as demonstrated by tests with bars in lightweight concrete. Very short transfer lengths (80 mm) have been measured. Three calculation approaches for splitting stresses are presented: the elasto-plastic, concrete deformation, and fracture energy approaches. The elasto-plastic model has been checked using a discrete element model that includes tensile softening of concrete. The presented formulas are confirmed by several tests on pretensioned prisms.
10.14359/3918
SP138-05
A. H. Rahman, D. A. Taylor, and C. Y. Kingsley
A comprehensive research program to investigate the suitability of a fiber reinforced plastic (FRP) for reinforced concrete is described. The investigation focuses on highway bridge decks and barrier walls. In determining the research needs, careful consideration has been given to the loads and environments to which highway bridges are subjected in northern North America. Short-term tension, creep, fatigue, and durability tests are being carried out on FRP specimens in the first phase of a three-phase program. Tests completed so far indicate a small yet noticeable change in strength and stiffness of FRP with change in temperature; small creep strain rates have been computed after 175 days of sustained loading, with satisfactory fatigue behavior under a tensile load cycling between 10 and 30 percent of the tensile strength.
10.14359/3919
Results Per Page 5 10 15 20 25 50 100
Edit Module Settings to define Page Content Reviewer