International Concrete Abstracts Portal

The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

Showing 1-5 of 12 Abstracts search results

Document: 

SP112-03

Date: 

January 1, 1989

Author(s):

M. A. Taylor

Publication:

Symposium Papers

Volume:

112

Abstract:

Gamma-ray absorption techniques were used to determine the amounts of each component in a system of mixtures (such as concrete). The technique uses photons of several energies in contrast to previous applications where only one energy was employed. The use of multiple energies provides more information than the single-beam system, and thus more properties can be determined. Several possible models for cementitious materials are discussed and compared. The paper presents the experimental determination of the initial data set needed prior to prediction experiments. One predictive technique is evaluated by comparison with blind tests.

DOI:

10.14359/2362


Document: 

SP112-10

Date: 

January 1, 1989

Author(s):

T. J. Parson

Publication:

Symposium Papers

Volume:

112

Abstract:

Reports results of an investigation into the use of maturity for predicting early-age concrete strengths. Prediction models were developed from cylinder-test results obtained from twelve concrete mixtures cured under three constant curing conditions. A datum temperature of 25 F (-4 C) was used as it appeared to produce the best results. A prediction model based on estimated ultimate concrete strength was used and found to be independent of curing temperature. However, the estimated ultimate concrete strength value appeared to be dependent on curing temperature. The model was verified by using it to predict concrete strengths obtained from cylinders and slabs cured outdoors.

DOI:

10.14359/2372


Document: 

SP112-02

Date: 

January 1, 1989

Author(s):

A. Alexander and H. T. Thornton

Publication:

Symposium Papers

Volume:

112

Abstract:

A new improved prototype ultrasonic pitch-catch (two-transducer) and pulse echo (one-transducer) system has been developed for concrete. Signal generation and detection is done with piezoelectric crystals. A literature search revealed that no piezoelectric pulse-echo system had been developed for the ultrasonic range ( > 20 kHz) and that pitch-catch measurements needed further development. No commercial system could be found on the market for making pitch-catch measurements. Research by the U.S. Army Engineer Waterways Experiment Station has resulted in the development of a 200-kHz pitch-catch system with a signal-to-noise ratio of 18 and a pulse-echo system with a SNR of 8. The mass and dimensions of the improved system have been reduced significantly from the prior state-of-the-art system. The WES system works well for thickness measurements of portland-cement concrete pavement and can indicate the presence of voids.

DOI:

10.14359/3655


Document: 

SP112-01

Date: 

January 1, 1989

Author(s):

M. Sansalone and N. J. Carino

Publication:

Symposium Papers

Volume:

112

Abstract:

A nondestructive test method has been developed for locating defects in concrete. The technique is referred to as the impact-echo method and is based on monitoring surface displacements resulting from the interactions of transient stress waves with internal discontinuities. Paper describes the technique and presents results of laboratory studies designed to evaluate the capabilities of the method. These laboratory studies were carried out on 500 mm thick slabs that contained a variety of artificial flaws embedded at known locations. Frequency analysis of recorded time-domain waveforms is explained and shown to be a quick and simple signal processing technique. Finally, results are presented from a field study in which the impact-echo method was used to investigate a 150 mm thick slab believed to contain voids.

DOI:

10.14359/3688


Document: 

SP112-04

Date: 

January 1, 1989

Author(s):

M. Ohtsu

Publication:

Symposium Papers

Volume:

112

Abstract:

On the basis of the acoustic emission (AE) measuring technique, a diagnostic method for nondestructive evaluation of cracks in concrete is proposed. The diagnostics consist of a mechanical criterion of crack initiation, a quantitative waveform analysis of AE, the evaluation of deterioration by a test of core specimens, and the ultrasonic spectroscopic investigation of cracked members. Results of basic studies on these methods are summarized. Results of basic studies confirm the feasibility and the usefulness of the proposed method as diagnostics of cracks in concrete structures.

DOI:

10.14359/2840


123

Results Per Page 




Edit Module Settings to define Page Content Reviewer