Title:
Ductility of Fiber-Reinforced Self-Consolidating Concrete under Multi-Axial Compression
Author(s):
Alessandro Fantilli
Publication:
Web Session
Volume:
Issue:
Appears on pages(s):
Keywords:
DOI:
Date:
3/24/2019
Abstract:
The results of 12 multi-axial compression tests performed on cylinders made of self-consolidating concrete, plain (SCC) and reinforced with steel fibers (FR-SCC), are presented in this paper. In the experimental campaign, four “reference” confining pressures (0, 1, 3 and 10 MPa) were applied on the lateral surface of the specimens. After the first stage of loading, when a hydraulic stress was applied to the cylinders, and progressively increased up to the value of a pre-established confining pressure, a longitudinal compressive load was used to generate crushing of concrete. During this failure, the post-peak behavior of SCC and FR-SCC can be defined by a non-dimensional function that relates the inelastic displacement and the relative stress during softening. Such a function also reveals the ductility of SCC, which increases with the confinement stress and with the fiber volume fraction. By adding 0.9% in volume of steel fibers, FR-SCC can show practically the same ductility measured in unreinforced SCC with 1 MPa of confining pressure. Thus, the presence of an adequate amount of fibers in SCC columns is sufficient to create a sort of distributed confinement.