• The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal


Title: Curing of Concrete Specimens Containing Metakaolin, Zeolite, and Micro NanoBubbles Water in Seawater

Author(s): Pouria Mohsenzadeh Tochahi, Gholamreza Asadollahfardi, Seyed Fazlullah Saghravani, Niloofar Mohammadzadeh

Publication: Materials Journal



Appears on pages(s):

Keywords: curing; seawater; micro-nano bubble; metakaolin; zeolite

DOI: 10.14359/51740567

Date: 2/8/2024

In marine structures, concrete requires adequate resistance against chloride ion penetration. As a result, numerous studies have been conducted to enhance the mechanical properties and durability of concrete by incorporating various pozzolans. This research has investigated the curing conditions of samples including zeolite and metakaolite mixed with Micro nanobubble water in artificial seawater and standard conditions. The results indicated that incorporating zeolite and metakaolin mixed with Micro nanobubble water, which was cured in artificial seawater conditions, compared to similar samples that were cured in standard conditions, improved the mechanical properties and durability of concrete samples. The compressive strength of 28 days concrete samples containing 10% metakaolin mixed with 100% Micro nanobubble water and samples consisting of 10% zeolite blended with 100% Micro nanobubble water cured in seawater in comparison to the control sample cured in the standard condition indicated an increase of 25.06% and 20.9%, respectively. The most results were obtained with a compound of 10% metakaolin, and 10% zeolite with 100% Micro nanobubble cured in seawater (MK10Z10NB100CS) which rose significantly Compressive, Tensile and Flexural Strength by 11.13, 14, and 9.1%, respectively, in comparison with to the MK10Z10NB100 sample cured in the standard condition. Furthermore, it decreased considerably 24-hr water absorption and Chloride Penetration at 90 days by 27.70 and 82.89%, respectively, in comparison with the control sample cured in standard conditions.