ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Examining Effect of Printing Directionality on the Freezing-and-Thawing Response of Three-Dimensional-Printed Cement Paste

Author(s): R. M. Ghantous, A. Evseeva, B. Dickey, S. Gupta, A. Prihar, H. S. Esmaeeli, R. Moini, and W. J. Weiss

Publication: Materials Journal

Volume: 120

Issue: 4

Appears on pages(s): 89-102

Keywords: anisotropy; coefficient of thermal expansion (COTE); freezable solution; freezing-and-thawing (FT) performance; three-dimensional (3-D)-printed cement paste

DOI: 10.14359/51738808

Date: 7/1/2023

Abstract:
The use of three-dimensional (3-D) printing with cementitious materials is increasing in the construction industry. Limited information exists on the freezing-and-thawing (FT) performance of the 3-D-printed elements. A few studies have used standard FT testing procedures (ASTM C666) to assess the FT response; however, ASTM C666 is insensitive to anisotropy caused by printing directionality. This paper investigates the FT response of 3-D-printed cement paste elements using thermomechanical analysis (TMA) to examine the influence of directionality in comparison to cast counterparts. Cement paste with a water-cement ratio (w/c) of 0.275 was used. The critical degree of saturation (DOSCR) as well as the coefficient of thermal expansion (COTE) were determined for specimens with varying degrees of saturation (DOS). Micro-computed tomography (micro-CT) was conducted to quantitatively understand the heterogeneities in the pore microstructure of 3-D-printed materials. For the specimens fabricated in this study, the COTE and DOSCR are independent of the 3-D-printing directionality and were comparable to conventionally cast specimens. For samples at 100% saturation, the FT damage was higher in the 3-D-printed samples as compared to the cast samples. The use of a low w/c in the 3-D-printed materials, desired from a buildability perspective, led to low capillary porosity, which thus decreased the amount of freezable pore solution and increased the FT resistance of the 3-D-printed materials. Micro-CT analysis demonstrated a significant 4.6 times higher average porosity in the interfacial regions compared to the filament cores.