ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: State of the Art on Self-Healing Capacity of Cementitious Materials Based on Data Mining Strategies

Author(s): Shashank Gupta, Salam Al-Obaidi, and Liberato Ferraral

Publication: Symposium Paper

Volume: 350

Issue:

Appears on pages(s): 27-44

Keywords: durability-based design; meta-analysis; self-healing concrete

Date: 11/1/2021

Abstract:
Concrete and cement-based materials inherently possess an autogenous self-healing capacity, which is even higher in High- and Ultra-High-Performance Concrete (HPC, UHPC) because of the high content of cement and supplementary cementitious materials (SCM) and low water/binder ratios. In this study, quantitative correlation through statistical models have been investigated based on the meta-data analysis. The employed approaches aim at establishing a correlation between the mix proportions, exposure type, and time and width of the initial crack against suitably defined self-healing indices. This study provides a holistic investigation of the autogenous self-healing capacity of cement-based materials based on extensive literature data mining. This is also intended to pave the way towards consistent incorporation of self-healing concepts into durability-based design approaches for reinforced concrete structures. The study has shown that the exposure type and duration, crack width size, and chemical admixtures have the most significant promotion on self-healing indices. However, other parameters, such as fibers and mineral admixtures have less impact on the autogenous self-healing of UHPC. The study also proposes suitably built design charts to quickly predict and evaluate the self-healing efficiency of cement-based materials which can significantly reduce, in the design stage, the time and efforts of laboratory investigation.




  

Please enter this 5 digit unlock code on the web page.