ABOUT THE INTERNATIONAL CONCRETE ABSTRACTS PORTAL

  • The International Concrete Abstracts Portal is an ACI led collaboration with leading technical organizations from within the international concrete industry and offers the most comprehensive collection of published concrete abstracts.

International Concrete Abstracts Portal

  


Title: Impact Resistance and Strength of SCC Containing Crumb and Powder Rubbers

Author(s): Assem A. A. Hassan

Publication: Symposium Paper

Volume: 347

Issue:

Appears on pages(s): 215-229

Keywords: Impact strength; SCC; compressive strength; crumb rubber; powder rubber

DOI: 10.14359/51732666

Date: 3/1/2021

Abstract:
The inclusion of rubber in concrete mixtures improved the impact resistance but negatively affected the strength and fresh properties of self-consolidating concrete (SCC). The objective of this investigation was to optimize the balance between the improved impact resistance and the reductions in the strength and fresh properties of rubberized SCC mixtures. This investigation evaluated and assessed the type/size and percentage of rubber needed to develop successful SCC mixtures with maximized impact strength and minimized reductions in strength. The studied variables were the type/size of rubber used (crumb rubber (CR) and two sizes of powder rubbers), percentage of rubber (0%, 15%, 25%, 30%, 35%, and 40%), type of concrete (SCC and vibrated concrete), and the use of fibers in the mixture. Because of the fresh properties restrictions of SCC, it was only possible to develop rubberized SCC with up to 25%, 30%, and 35% CR, powder rubber 40/80, and powder rubber 140, respectively. With the absence of fresh properties restrictions of SCC, it was possible to develop vibrated rubberized concrete with up to 40% of any type of rubber. Using higher percentages of rubber in vibrated rubberized concrete dropped the compressive strength to less than 25 MPa (3.63 ksi). The results also indicated that despite the slight improvement in the fresh properties and strength of mixtures with powder rubbers compared to mixtures with CR, mixtures with CR showed significantly higher improvements in the impact resistance.